Олимпиадные задачи из источника «глава 9. Геометрические неравенства» для 1-8 класса - сложность 1-2 с решениями

Квадрат разрезан на прямоугольники.

Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.

Докажите, что замкнутую ломаную длины 1 можно поместить в круг радиуса 0, 25.

На отрезке длиной 1 дано <i>n</i>точек. Докажите, что сумма расстояний от некоторой точки отрезка до этих точек не меньше <i>n</i>/2.

Угол <i>A</i>четырехугольника <i>ABCD</i>тупой; <i>F</i> — середина стороны <i>BC</i>. Докажите, что 2<i>FA</i><<i>BD</i>+<i>CD</i>.

Докажите, что сумма расстояний от произвольной точки до трех вершин равнобедренной трапеции больше расстояния от этой точки до четвертой вершины.

Докажите, что если два противоположных угла четырехугольника тупые, то диагональ, соединяющая вершины этих углов, короче другой диагонали.

В трапеции <i>ABCD</i>углы при основании <i>AD</i>удовлетворяют неравенствам $\angle$<i>A</i><$\angle$<i>D</i>< 90<sup><tt>o</tt></sup>. Докажите, что тогда <i>AC</i>><i>BD</i>.

В четырехугольнике <i>ABCD</i>углы <i>A</i>и <i>B</i>равны, a $\angle$<i>D</i>>$\angle$<i>C</i>. Докажите, что тогда <i>AD</i><<i>BC</i>.

Две высоты треугольника равны 12 и 20. Докажите, что третья высота меньше 30.

Докажите, что если длины сторон треугольника связаны неравенством <i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>> 5<i>c</i><sup>2</sup>, то <i>c</i> — длина наименьшей стороны.

В. треугольнике длины двух сторон равны 3, 14 и 0, 67. Найдите длину третьей стороны, если известно, что она является целым числом.

Пусть <i>ABCD</i> — выпуклый четырехугольник, причем <i>AB</i>+<i>BD</i>$\leq$<i>AC</i>+<i>CD</i>. Докажите, что <i>AB</i><<i>AC</i>.

<i>a</i>,<i>b</i>и<i>c</i>- длины сторон произвольного треугольника. Докажите, что<div align="CENTER"> $\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3. </div>

<i>a</i>,<i>b</i>и<i>c</i>- длины сторон произвольного треугольника. Докажите, что<div align="CENTER"> <i>a</i>(<i>b</i> - <i>c</i>)<sup>2</sup> + <i>b</i>(<i>c</i> - <i>a</i>)<sup>2</sup> + <i>c</i>(<i>a</i> - <i>b</i>)<sup>2</sup> + 4<i>abc</i> > <i>a</i><sup>3</sup> + <i>b</i><sup>3</sup> + <i>c</i><sup>3</sup>. </div>

При любом натуральном <i>n</i>из чисел <i>a</i><sup>n</sup>,<i>b</i><sup>n</sup>и <i>c</i><sup>n</sup>можно составить треугольник. Докажите, что среди чисел <i>a</i>,<i>b</i>и <i>c</i>есть два равных.

<i>a</i>,<i>b</i>и<i>c</i>- длины сторон произвольного треугольника. Докажите, что <i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>+<i>c</i><sup>2</sup>< 2(<i>ab</i>+<i>bc</i>+<i>ca</i>).

<i>a</i>,<i>b</i>и<i>c</i>- длины сторон произвольного треугольника. Докажите, что <i>a</i>=<i>y</i>+<i>z</i>,<i>b</i>=<i>x</i>+<i>z</i>и <i>c</i>=<i>x</i>+<i>y</i>, где <i>x</i>,<i>y</i>и <i>z</i> — положительные числа.

Даны <i>n</i>точек <i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>и окружность радиуса 1. Докажите, что на окружности можно выбрать точку <i>M</i>так, что <i>MA</i><sub>1</sub>+ ... +<i>MA</i><sub>n</sub>$\geq$<i>n</i>.

Докажите, что в любом треугольнике сумма медиан больше 3/4 периметра, но меньше периметра.

Докажите, что (<i>a</i>+<i>b</i>-<i>c</i>)/2 <<i>m</i><sub>c</sub>< (<i>a</i>+<i>b</i>)/2, где<i>a</i>,<i>b</i>и<i>c</i>- длины сторон произвольного треугольника,<i>m</i><sub>c</sub>- медиана к стороне<i>c</i>.

Радиусы двух окружностей равны <i>R</i>и <i>r</i>, а расстояние между их центрами равно <i>d</i>. Докажите, что эти окружности пересекаются тогда и только тогда, когда |<i>R</i>-<i>r</i>| <<i>d</i><<i>R</i>+<i>r</i>.

Докажите, что $\angle$<i>ABC</i>> 90<sup><tt>o</tt></sup>тогда и только тогда, когда точка <i>B</i>лежит внутри окружности с диаметром <i>AC</i>.

Докажите, что <i>S</i><sub>ABCD</sub>$\leq$(<i>AB</i><sup> . </sup><i>BC</i>+<i>AD</i><sup> . </sup><i>DC</i>)/2.

Докажите, что <i>S</i><sub>ABC</sub>$\leq$<i>AB</i><sup> . </sup><i>BC</i>/2.

Пусть <i>ABCD</i> – выпуклый четырехугольник. Докажите, что  <i>AB</i> + <i>CD</i> < <i>AC</i> + <i>BD</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка