Олимпиадные задачи из источника «2001/02» - сложность 2 с решениями

На Луне имеют хождение монеты достоинством в 1, 15 и 50 фертингов. Незнайка отдал за покупку несколько монет и получил сдачу – на одну монету больше. Какова наименьшая возможная цена покупки?

Три шахматиста <i>A, B</i> и <i>C</i> сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков <i>A</i> занял первое место, <i>C</i> – последнее, а по числу побед, наоборот, <i>A</i> занял последнее место, <i>C</i> – первое (за победу присуждается одно очко, за ничью – пол-очка)?

Выйдя на маршрут в 4 часа утра, альпинист Джеф Лоу к вечеру достиг пика "Свободная Корея". Переночевав на вершине, на следующий день он вышел в то же время и быстро спустился обратно по пути подъема. Докажите, что на маршруте есть такая точка, которую Лоу во время спуска и во время подъема проходил в одно и то же время суток.

В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске — по 500, в Екатеринбурге — 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны?

В Старой Калитве живет 50 школьников, а в Средних Болтаях — 100 школьников. Где нужно построить школу, чтобы сумма расстояний, проходимых всеми школьниками, была наименьшей?

а) Вот пример "снежного кома" на английском языке: <i>I do not know where family doctors acquired illegibly perplexing handwriting; nevertheless, extraordinary pharmaceutical intellectuality, counterbalancing indecipherability, transcendentalizes intercommunications' incomprehensibleness</i>. Приведите пример осмысленного снежного кома на русском языке.   б) Большой, зеленый, живет под землей и питается камнями. Кто это?

Существует ли треугольник с вершинами в узлах клетчатой бумаги, каждая сторона которого длиннее 100 клеточек, а площадь меньше площади одной клеточки?

Является ли число 102030405060708090807060504030201 квадратом какого-нибудь целого числа?

В Трансильвании живут беспартийные (которые всегда говорят правду) и члены одной единственной партии (которые всегда лгут). Кроме того, половина трансильванцев не в своем уме, и считает все истинные утверждения ложными и наоборот. Как с помощью одного вопроса (допускающего ответ "да-нет") выяснить,   а) в своем ли уме ваш собеседник из Трансильвании;   б) является ли он членом партии?

Федя К. вышел из некоторой точки, прошел 1км на север, затем

  • 1км на восток, затем - 1км на юг и вернулся в исходную точку.   а) Где такое могло произойти?   б) Найдите все такие точки на Земле.

Учащиеся 57-й школы решили провести чемпионат по мини-футболу. Так как ворота на школьном дворе разного размера, то игроки хотят составить расписание игр так, чтобы:

  1) Каждая команда сыграла с каждой ровно по одному разу.

  2) Каждая команда чередовала свои игры – то на плохой стороне, то на хорошей стороне двора.

    а) Удастся ли это сделать, если в турнире принимают участие 10 команд?

    б) Можно ли при этом составить расписание так, чтобы каждый день каждая команда играла ровно одну игру?

Сборная России по футболу выиграла у сборной Туниса со счетом  9 : 5.  Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.

Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой – 17 игр. Мог ли третий участник сыграть   а) 34;   б) 35;   в) 56 игр?

Фальшивомонетчик Вася стал выпускать золотые слитки. Сделав пять таких слитков, он замерил вес каждой пары. Получились величины в 110, 112, 113, 114, 115, 116, 117, 118, 120 и 121 унцию. Сколько весит каждый брусок?

Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет а) 100; б) 99; в) 98?

Фальшивомонетчик Вася изготовил четыре монеты достоинством 1, 3, 4, 7 квача, которые должны весить 1, 3, 4, 7 граммов соответственно. Но одну из этих монет он сделал некачественно – с неправильным весом. Как за два взвешивания на чашечных весах без гирек определить "неправильную" монету?

а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег?б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)

а) Есть 10 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?     б) Как определить фальшивую монету за три взвешивания, если монет 27?

Докажите, что в игре в "крестики-нолики" на поле 3*3 при правильной игре первого игрока второй игрок выиграть не сможет.

В нижнем левом углу шахматной доски 8 на 8 стоит фишка. Двое по очереди передвигают её на одну клетку вверх, вправо или вправо-вверх по диагонали.  Выигрывает тот, кто поставит фишку в правый верхний угол. Кто победит при правильной игре?

а) Из обычной шахматной доски 8 на 8 вырезали клетки с5 и g2. Можно ли то, что осталось, замостить доминошками 1 на 2?   б) Тот же вопрос, если вырезали клетки с6 и g2.

а) Какое максимальное количество слонов можно расставить на доске 1000 на 1000 так, чтобы они не били друг друга?

б) Какое максимальное количество коней можно расставить на доске 8×8 так, чтобы они не били друг друга?

На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.

  а) Придумайте, как перевернуть ровно одну шашку на доске 6×6, произвольно уставленной шашками.

  б) Можно ли добиться того, чтобы все шашки на доске 5×6 стали белыми, если чёрными изначально была ровно половина шашек.

Когда Клайв поступил в математическую школу, ему подарили новые часы, на которых была ещё секундная стрелка.

Сколько раз за сутки все три стрелки на таких часах совпадут?

Очень скучно смотреть на черно-белый циферблат, поэтому Клайв ровно в полдень закрасил число 12 красным цветом и решил через каждые 57 часов закрашивать текущий час в красный цвет.

  а) Сколько чисел на циферблате окажутся покрашенными?

  б) Сколько окажется красных чисел, если Клайв будет красить их каждый 1913-й час?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка