Олимпиадные задачи из источника «1957 год» для 5-10 класса - сложность 2 с решениями

Разбить число 1957 на 12 целых положительных слагаемых <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>12</sub> так, чтобы произведение <i>a</i><sub>1</sub>!<i>a</i><sub>2</sub>!...<i>a</i><sub>12</sub>! было минимально.

Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности.

В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы.

В треугольнике известны две стороны<i>a</i>и<i>b</i>. Какой должна быть третья сторона, чтобы наибольший угол треугольника имел наименьшую величину?

Школьник едет на кружок на трамвае, платит рубль и получает сдачу. Доказать, что если он обратно также поедет в трамвае, то он сможет уплатить за проезд без сдачи. (<b>Примечание.</b>Проезд в трамвае стоил 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)

В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.

При каких целых <i>n</i> число  20<sup><i>n</i></sup> + 16<sup><i>n</i></sup> – 3<sup><i>n</i></sup> – 1  делится на 323?

Школьник едет на олимпиаду на метро, платит рубль и получает сдачу. Доказать, что если он обратно поедет на трамвае, то он сможет уплатить за проезд без сдачи. (Проезд в метро стоил 50 коп., в трамвае – 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)

Решить уравнение  <i>x</i>³ – [<i>x</i>] = 3.

Известно, что  <i>ax</i><sup>4</sup> + <i>bx</i>³ + <i>cx</i>² + <i>dx + e</i>,  где <i>a, b, c, d, e</i> – данные целые числа, при любом целом <i>x</i> делится на 7.

Доказать, что все числа <i>a, b, c, d, e</i> делятся на 7.

Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым.

От<i>A</i>до<i>B</i> 999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до<i>A</i>и до<i>B</i>: <img width="54" height="36" align="MIDDLE" border="0" src="/storage/problem-media/78097/problem_78097_img_2.gif">,<img width="54" height="36" align="MIDDLE" border="0" src="/storage/problem-media/78097/problem_78097_img_3.gif">, ...,<img width="54" height="36" align="MIDDLE" border="0" src="/storage/problem-media/78097/problem_78097_img_4.gif">. Сколько среди них таких, на которых имеются только две различные цифры?

В прямоугольной таблице, составленной из положительных чисел, произведение суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему на их пересечении. Доказать, что сумма всех чисел в таблице равна единице.

Известно, что  <i>ax</i>³ + <i>bx</i>² + <i>cx + d</i>,  где <i>a, b, c, d</i> – данные целые числа, при любом целом <i>x</i> делится на 5. Доказать, что все числа <i>a, b, c, d</i> делятся на 5.

Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.

Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка