Олимпиадные задачи из источника «1959 год» для 11 класса - сложность 2 с решениями

Два концентрических круга поделены на 2<i>k</i>равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.

Пусть<i>ABCD</i>— пространственный четырёхугольник, точки<i>K</i><sub>1</sub>и<i>K</i><sub>2</sub>делят соответственно стороны<i>AB</i>и<i>DC</i>в отношении$\alpha$, точки<i>K</i><sub>3</sub>и<i>K</i><sub>4</sub>делят соответственно стороны<i>BC</i>и<i>AD</i>в отношении$\beta$. Доказать, что отрезки<i>K</i><sub>1</sub><i>K</i><sub>2</sub>и<i>K</i><sub>3</sub><i>K</i><sub>4</sub>пересекаются.

Доказать, что не более одной вершины тетраэдра обладает тем свойством, что сумма любых двух плоских углов при этой вершине больше180<sup><tt>o</tt></sup>.

В квадратную таблицу <i>N×N</i> записаны все целые числа по следующему закону: 1 стоит на любом месте, 2 стоит в строке с номером, равным номеру столбца, содержащего 1, 3 стоит в строке с номером, равным номеру столбца, содержащего 2, и так далее. На сколько сумма чисел в столбце, содержащем <i>N</i>², отличается от суммы чисел в строке, содержащей 1.

Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?

Доказать, что не существует таких натуральных чисел <i>x, y, z, k</i>, что  <i>x<sup>k</sup> + y<sup>k</sup> = z<sup>k</sup></i>  при условии  <i>x < k,  y < k</i>.

Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла.

Рассмотрим лист клетчатой бумаги со стороной клетки, равной 1. Пусть <i>P<sub>k</sub></i> – число всех непересекающихся ломаных длины <i>k</i>, начинающихся в точке <i>O</i> – некотором фиксированном узле сетки. Доказать, что  <i>P<sub>k</sub></i>·3<sup>–<i>k</i></sup> < 2  для любого <i>k</i>.

Имеется 1959 положительных чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>...,<i>a</i><sub>1959</sub>, сумма которых равна 1. Рассматриваются всевозможные комбинации из 1000 чисел, причём комбинации считаются совпадающими, если они отличаются только порядком чисел. Для каждой комбинации рассматривается произведение входящих в неё чисел. Доказать, что сумма всех этих произведений меньше 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка