Олимпиадные задачи из источника «1960 год» - сложность 3 с решениями
Дана окружность и точка <i>A</i> внутри неё.
Найдите геометрическое место вершин <i>C</i> всевозможных прямоугольников <i>ABCD</i>, где точки <i>B</i> и <i>D</i> лежат на окружности.
Улитка должна проползти вдоль линий клетчатой бумаги путь длины 2<i>n</i>, начав и кончив свой путь в данном узле.
Доказать, что число различных её маршрутов равно <img align="absmiddle" src="/storage/problem-media/78237/problem_78237_img_2.gif">
Собралось <i>n</i> человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.
Число<i>A</i>делится на 1, 2, 3, ..., 9. Доказать, что если 2<i>A</i>представлено в виде суммы натуральных чисел, меньших 10, 2<i>A</i>=<i>a</i><sub>1</sub>+<i>a</i><sub>2</sub>+ ... +<i>a<sub>k</sub></i>, то из чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a<sub>k</sub></i>можно выбрать часть, сумма которых равна<i>A</i>.
Найти геометрическое место центров прямоугольников, описанных около данного остроугольного треугольника.
Доказать, что никакую прямоугольную шахматную доску шириной в 4 клетки нельзя обойти ходом шахматного коня, побывав на каждом поле по одному разу и последним ходом вернувшись на исходную клетку.
Дан пятиугольник<i>ABCDE</i>.<i>AB</i>=<i>BC</i>=<i>CD</i>=<i>DE</i>,$\angle$<i>B</i>=$\angle$<i>D</i>= 90<sup><tt>o</tt></sup>. Доказать, что пятиугольниками, равными данному, можно замостить плоскость.
Улитка ползёт с непостоянной скоростью. Несколько человек наблюдало за ней по очереди в течение 6 минут. Каждый начинал наблюдать раньше, чем кончал предыдущий, и наблюдал ровно 1 минуту. За эту минуту улитка проползла ровно 1 м. Доказать, что за все 6 минут улитка могла проползти самое большее 10 м.
Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.
Даны числа$\alpha_{1}$,$\alpha_{2}$,...,$\alpha_{k}$, причём для всех натуральных нечётных<i>n</i>имеет место равенство<div align="CENTER"> $\displaystyle \alpha_{1}^{n}$ + $\displaystyle \alpha_{2}^{n}$ + ... + $\displaystyle \alpha_{k}^{n}$ = 0. </div>Доказать, что те из чисел$\alpha_{1}$,$\alpha_{2}$,...,$\alpha_{k}$, которые не равны нулю, можно разбить на пары таким образом, чтобы два числа, входящие в одну и ту же пару, были бы равны по абсолютной величине, но противоположны по знаку.
В десятичной записи целого числа <i>A</i> все цифры, кроме первой и последней, нули, первая и последняя – не нули, число цифр – не меньше трёх.
Доказать, что <i>A</i> не является точным квадратом.
Дан выпуклый многоугольник и точка<i>O</i>внутри него. Любая прямая, проходящая через точку<i>O</i>, делит площадь многоугольника пополам. Доказать, что многоугольник центрально-симметричный и<i>O</i>— центр симметрии.
Доказать, что существует бесконечно много натуральных чисел, не представимых в виде <i>p + n</i><sup>2<i>k</i></sup> ни при каких простых <i>p</i> и целых <i>n</i> и <i>k</i>.
Даны отрезки<i>AB</i>,<i>CD</i>и точка<i>O</i>. Конец отрезка называется "отмеченным", если прямая, проходящая через него и точку<i>O</i>, не пересекает другой отрезок. Сколько может быть отмеченных концов?
<i>M</i>и<i>N</i>— точки пересечения двух окружностей с центрами<i>O</i><sub>1</sub>и<i>O</i><sub>2</sub>. Прямая<i>O</i><sub>1</sub><i>M</i>пересекает1-ю окружность в точке<i>A</i><sub>1</sub>, а2-ю в точке<i>A</i><sub>2</sub>. Прямая<i>O</i><sub>2</sub><i>M</i>пересекает1-ю окружность в точке<i>B</i><sub>1</sub>, а2-ю в точке<i>B</i><sub>2</sub>. Доказать, что прямые<i>A</i><sub>1</sub><i>B</i><sub>1</sub>,<i>A</i><sub>2</sub><i>B</i><sub>2</sub>и<i>MN...