Олимпиадные задачи из источника «10 класс»
10 класс
НазадПусть<i> M </i>– точка пересечения медиан треугольника<i> ABC </i>. На перпендикулярах, опущенных из<i> M </i>на стороны<i> BC </i>,<i> AC </i>и<i> AB </i>, взяты точки<i> A</i>1,<i> B</i>1и<i> C</i>1соответственно, причём<i> A</i>1<i>B</i>1<i> <img src="/storage/problem-media/108095/problem_108095_img_2.gif"> MC </i>и<i> A</i>1<i>C</i>1<i> <img src="/storage/problem-media/108095/problem_108095_img_2.gif"> MB </i>. Докажите, что точка<i> M </i>является точкой пересечения медиан и в треугольнике<i> A</i>1<i>B</i>1<i>C</i>1.
Дана бесконечная последовательность многочленов <i>P</i><sub>1</sub>(<i>x</i>), <i>P</i><sub>2</sub>(<i>x</i>), ... . Всегда ли существует конечный набор функций <i>f</i><sub>1</sub>(<i>x</i>), <i>f</i><sub>2</sub>(<i>x</i>), ..., <i>f</i><sub><i>N</i></sub>(<i>x</i>), композициями которых можно записать любой из них (например, <i>P</i><sub>1</sub>(<i>x</i>) = <i>f</i><sub>2</sub>(<i>f</i><sub>1</sub>(<i>f</i><sub>2</sub>(<i>x</i>))))?
В стране несколько городов, соединённых дорогами с односторонним и двусторонним движением. Известно, что из каждого города в любой другой можно проехать ровно одним путём, не проходящим два раза через один и тот же город. Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога не соединяла два города из одной губернии.
Пусть <i>P</i>(<i>x</i>) – многочлен со старшим коэффициентом 1, а последовательность целых чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... такова, что <i>P</i>(<i>a</i><sub>1</sub>)= 0, <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>, <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub> и т. д. Числа в последовательности не повторяются. Какую степень может иметь <i>P</i>(<i>x</i>)?
По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно.
Существуют ли такие натуральные числа <i>a, b</i> и <i>c</i>, что у каждого из уравнений <i>ax</i>² + <i>bx + c</i> = 0, <i>ax</i> + <i>bx – c</i> = 0, <i>ax</i>² – <i>bx + c</i> = 0, <i>ax</i>² – <i>bx – c</i> = 0 оба корня – целые?