Олимпиадные задачи из источника «15 турнир (1993/1994 год)» для 10 класса - сложность 2-4 с решениями

Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...

Существует ли такой многочлен <i>P</i>(<i>x</i>), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (<i>P</i>(<i>x</i>))<sup><i>n</i></sup>,  <i>n</i> > 1,  положительны?

<i>D</i>– точка на стороне<i>BC</i>треугольника<i>ABC</i>. B треугольники<i>ABD, ACD</i>вписаны окружности, и к ним проведена общая внешняя касательная (отличная от<i>BC</i>), пересекающая<i>AD</i>в точке<i>K</i>. Докажите, что длина отрезка<i>AK</i>не зависит от положения точки<i>D</i>на<i>BC</i>.

В квадрате клетчатой бумаги 10×10 нужно расставить один корабль 1×4, два – 1×3, три – 1×2 и четыре – 1×1. Корабли не должны иметь общих точек (даже вершин) друг с другом, но могут прилегать к границам квадрата. Докажите, что

  а) если расставлять их в указанном выше порядке (начиная с больших), то этот процесс всегда удается довести до конца, даже если в каждый момент заботиться только об очередном корабле, не думая о будущих;

  б) если расставлять их в обратном порядке (начиная с малых), то может возникнуть ситуация, когда очередной корабль поставить нельзя.

Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз.

Две окружности пересекаются в точках <i>A</i> и <i>B</i>. В точке <i>A</i> к обеим проведены касательные, пересекающие окружности в точках <i>M</i> и <i>N</i>. Прямые <i>BM</i> и <i>BN</i> пересекают окружности еще раз в точках <i>P</i> и <i>Q</i> (<i>P</i> – на прямой <i>BM, Q</i> – на прямой <i>BN</i>). Докажите, что отрезки <i>MP</i> и <i>NQ</i> равны.

{<i>a<sub>n</sub></i>} – последовательность чисел между 0 и 1, в которой следом за <i>x</i> идёт  1 – |1 – 2<i>x</i>|.

  а) Докажите, что если <i>a</i><sub>1</sub> рационально, то последовательность, начиная с некоторого места, периодическая.

  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то <i>a</i><sub>1</sub> рационально.

10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:

  а) перевернуть четыре фишки, стоящие подряд;

&nbsp б) перевернуть четыре фишки, расположенные так:  ××0××  (× – фишка, входящая в четвёрку, 0 – не входящая).

Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?

Последовательность натуральных чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, ...  такова, что для каждого <i>n</i> уравнение  <i>a</i><sub><i>n</i>+2</sub><i>x</i>² + <i>a</i><sub><i>n</i>+1</sub><i>x</i> + <i>a<sub>n</sub></i> = 0  имеет действительный корень. Может ли число членов этой последовательности быть

  а) равным 10;

  б) бесконечным?

В каждой целой точке числовой оси расположена лампочка с кнопкой, при нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон <i>S</i>. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом <i>S</i> за несколько операций можно добиться того, что будут гореть ровно две лампочки.

В таблице

    0 1 2 3 ... 9

    9 0 1 2 ... 8

    8 9 0 1 ... 7

        ...

    1 2 3 4 ... 0

отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один элемент.

Докажите, что среди отмеченных элементов есть хотя бы два равных.

На кружок пришло 60 учеников. Оказалось, что среди каждых десяти из них есть не меньше трёх одноклассников.

Докажите, что среди кружковцев найдётся по меньшей мере 15 учеников, которые учатся в одном классе.

Известно, что уравнение  <i>x</i><sup>4</sup> + <i>ax</i>³ + 2<i>x</i>² + <i>bx</i> + 1 = 0  имеет действительный корень. Докажите неравенство  <i>a</i>² + <i>b</i>² ≥ 8.

В вершинах квадрата сидят четыре кузнечика. Они прыгают в произвольном порядке, но не одновременно. Каждый кузнечик прыгает в такую точку, которая симметрична точке, в которой он находился до прыжка, относительно центра тяжести трёх других кузнечиков. Может ли в какой-то момент один кузнечик приземлиться на другого? (Кузнечики точечные.)

Выпуклый 1993-угольник разрезан на выпуклые семиугольники.

Докажите, что найдутся четыре соседние вершины 1993-угольника, принадлежащие одному семиугольнику.

(Вершина семиугольника не может лежать внутри стороны 1993-угольника.)

Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого <i>n</i> включительно:   12345678910111213...(<i>n</i>). Существует ли такое <i>n</i>, что в этой записи все десять цифр встречаются одинаковое количество раз?

На гипотенузе <i>AB</i> прямоугольного треугольника <i>ABC</i> взяты такие точки <i>M</i> и <i>N</i>, что  <i>BC = BM</i>  и  <i>AC = AN</i>.  Докажите, что  ∠<i>MCN</i> = 45°.

Требуется сделать набор гирек, каждая из которых весит целое число граммов, с помощью которых можно взвесить любой целый вес от 1 до 55 граммов включительно даже в том случае, если некоторые гирьки потеряны (гирьки кладутся на одну чашку весов, измеряемый вес – на другую). Рассмотрите два варианта задачи:

  а) необходимо подобрать 10 гирек, из которых может быть потеряна любая одна;

  б) необходимо подобрать 12 гирек, из которых могут быть потеряны любые две.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка