Олимпиадные задачи из источника «16 турнир (1994/1995 год)» для 11 класса
16 турнир (1994/1995 год)
НазадЦелые числа <i>a, b</i> и <i>c</i> таковы, что числа <sup><i>a</i></sup>/<sub><i>b</i></sub> + <sup><i>b</i></sup>/<sub><i>c</i></sub> + <sup><i>c</i></sup>/<sub><i>a</i></sub> и <sup><i>a</i></sup>/<sub><i>с</i></sub> + <sup><i>с</i></sup>/<sub><i>b</i></sub> + <sup><i>b</i></sup>/<sub><i>a</i></sub> тоже целые. Докажите, что |<i>a</i>| = |<i>b</i>| = |<i>c</i>|.
Существует ли такой невыпуклый многогранник, что из некоторой точки <i>М</i>, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)
При каких <i>n</i> можно раскрасить в три цвета все ребра <i>n</i>-угольной призмы (основания – <i>n</i>-угольники) так, что в каждой вершине сходятся все три цвета и у каждой грани (включая основания) есть стороны всех трёх цветов?
Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)
Рассматривается последовательность, <i>n</i>-й член которой есть первая цифра числа 2<sup><i>n</i></sup>.
Докажите, что количество различных "слов" длины 13 – наборов из 13 подряд идущих цифр – равно 57.
Покажите, как разбить пространство
а) на одинаковые тетраэдры,
б) на одинаковые равногранные тетраэдры
(тетраэдр называется <i>равногранным</i>, если все его грани – равные треугольники).
Коэффициенты квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?
Фигура Ф представляет собой пересечение <i>n</i> кругов (<i>n</i> ≥ 2, радиусы не обязательно одинаковы). Какое максимальное число криволинейных "сторон" может иметь фигура Ф? (Криволинейная сторона – это участок границы Ф, принадлежащий одной из окружностей и ограниченный точками пересечения с другими окружностями.)
В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.