Олимпиадные задачи из источника «17 турнир (1995/1996 год)» - сложность 2 с решениями
17 турнир (1995/1996 год)
НазадЧерез вершину <i>А</i> остроугольного треугольника <i>АВС</i> проведены касательная <i>АК</i> к его описанной окружности, а также биссектрисы <i>АN</i> и <i>AM</i> внутреннего и внешнего углов при вершине <i>А</i> (точки <i>М, K</i> и <i>N</i> лежат на прямой <i>ВС</i>). Докажите, что <i>MK = KN</i>.
Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция на гипотенузу вписанной окружности?
Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.
Заданы две непересекающиеся окружности с центрами <i>O</i><sub>1</sub> и <i>O</i><sub>2</sub> и их общая внешняя касательная, касающаяся окружностей соответственно в точках <i>A</i><sub>1</sub> и <i>A</i><sub>2</sub>. Пусть <i>B</i><sub>1</sub> и <i>B</i><sub>2</sub> – точки пересечения отрезка <i>O</i><sub>1</sub><i>O</i><sub>2</sub> с соответствующими окружностями, а <i>C</i> – точка пересечения прямых <i>A</i><sub>1</sub><i>B</i><sub>1</sub> и <i>A</i><sub>2</sub><i>B</i><sub>2</sub>. Докажит...
Прямоугольник <i>ABCD</i> с площадью 1 сложили по прямой так, что точка <i>C</i> совпала с <i>A</i>.
Докажите, что площадь получившегося пятиугольника меньше ¾.
<i>AK</i> – биссектриса треугольника <i>ABC, P</i> и <i>Q</i> – точки на двух других биссектрисах (или на их продолжениях) такие, что <i>PA = PK</i> и <i>QA = QK</i>.
Докажите, что ∠<i>PAQ</i> = 90° – ½ ∠<i>A</i>.
Можно ли вычеркнуть из произведения 1!·2!·3!·...·100! один из факториалов так, чтобы произведение оставшихся было квадратом целого числа?
Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
На сторонах треугольника <i>ABC</i> во внешнюю сторону построены квадраты <i>ABMN, BCKL, ACPQ</i>. На отрезках <i>NQ</i> и <i>PK</i> построены квадраты <i>NQZT</i> и <i>PKXY</i>. Разность площадей квадратов <i>ABMN</i> и <i>BCKL</i> равна <i>d</i>. Найдите разность площадей квадратов <i>NQZT</i> и <i>PKXY</i>
а) в случае, если угол <i>ABC</i> прямой,
б) в общем случае.
Можно ли разбить все пространство на правильные тетраэдры и октаэдры?
Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?
В ряд выписаны действительные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a</i><sub>1996</sub>. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.
Положительные числа <i>a, b, c</i> таковы, что <i>a</i>² + <i>b</i>² – <i>ab = c</i>². Докажите, что (<i>a – c</i>)(<i>b – c</i>) ≤ 0.
Двое играют в крестики-нолики на доске 10×10 по следующим правилам. Сначала они заполняют крестиками и ноликами всю доску, ставя их по очереди (начинающий игру ставит крестики, его партнер – нолики). Затем подсчитываются два числа: K – число пятерок подряд стоящих крестиков и H – число пятерок подряд стоящих ноликов. (Считаются пятерки, стоящие по горизонтали, по вертикали и параллельно диагонали; если подряд стоят шесть крестиков, то это даёт две пятерки, если семь, то три и т. д.) Число K – H считается выигрышем первого игрока (проигрышем второго).
а) Существует ли у первого игрока беспроигрышная стратегия?
б) Существует ли у него выигрышная стратегия?
Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины которых лежат на окружности.
а) Нарисуйте такую ломаную, которая имеет наибольшее возможное число точек самопересечения.
б) Докажите, что большего числа самопересечений такая ломаная не может иметь.
Существует ли такое число <i>n</i> , что числа
а) <i>n</i> – 96, <i>n</i>, <i>n</i> + 96;
б) <i>n</i> – 1996, <i>n</i>, <i>n</i> + 1996
простые? (Все простые числа считаем положительными.)
На плоскости даны три точки <i>A, B, C</i>. Через точку <i>C</i> проведите прямую так, чтобы произведение расстояний от этой прямой до <i>A</i> и <i>B</i> было максимальным. Всегда ли такая прямая единственна?
Шестизначное число начинается с цифры 5. Верно ли, что к нему всегда можно приписать справа шесть цифр так, чтобы получился полный квадрат?
а) Существуют ли четыре таких различных натуральных числа, что сумма каждых трёх из них есть простое число?
б) Существуют ли пять таких различных натуральных чисел, что сумма каждых трёх из них есть простое число?
Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.
Существуют ли 100 таких натуральных чисел, что их сумма равна их наименьшему общему кратному?
(Среди чисел могут быть равные.)
На плоскости расположен квадрат и невидимыми чернилами нанесена точка <i>P</i>. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит <i>P</i> (если <i>P</i> лежит на прямой, то он говорит, что <i>P</i> лежит на прямой).
Какое наименьшее число таких вопросов необходимо задать, чтобы узнать, лежит ли точка <i>P</i> внутри квадрата?