Олимпиадные задачи из источника «весенний тур, основной вариант, 10-11 класс» для 10 класса

Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.

Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.

На окружности сидят 12 кузнечиков в различных точках. Эти точки делят окружность на 12 дуг. Отметим 12 середин дуг. По сигналу кузнечики одновременно прыгают, каждый – в ближайшую по часовой стрелке отмеченную точку. Снова образуются 12 дуг, прыжки в середины дуг повторяются, и т. д. Может ли хотя бы один кузнечик вернуться в свою исходную точку после того, как им сделано   a) 12 прыжков;   б) 13 прыжков?

Докажите, что можно найти бесконечно много таких пар целых чисел, что в десятичной записи каждого числа все цифры не меньше 7 и произведение чисел каждой пары – тоже число, где все цифры не меньше 7.

На биссектрисе <i>AA</i><sub>1</sub> треугольника <i>ABC</i> выбрана точка <i>X</i>. Прямая <i>BX</i> пересекает сторону <i>AC</i> в точке <i>B</i><sub>1</sub>, а прямая <i>CX</i> пересекает сторону <i>AB</i> в точке <i>C</i><sub>1</sub>. Отрезки <i>A</i><sub>1</sub><i>B</i><sub>1</sub> и <i>CC</i><sub>1</sub> пересекаются в точке <i>P</i>, а отрезки <i>A</i><sub>1</sub><i>C</i><sub>1</sub> и <i>BB</i><sub>1</sub> пересекаются в точке <i>Q</i>. Докажите, что углы <i>PAC</i&g...

Докажите, что любая натуральная степень многочлена  <i>P</i>(<i>x</i>) = <i>x</i><sup>4</sup> + <i>x</i>³ – 3<i>x</i>² + <i>x</i> + 2  имеет хотя бы один отрицательный коэффициент.

Существуют ли такие натуральные <i>n</i> и <i>k</i>, что десятичная запись числа 2<sup><i>n</i></sup> начинается числом 5<sup><i>k</i></sup>, а десятичная запись числа 5<sup><i>n</i></sup> начинается числом 2<sup><i>k</i></sup>?

Дан выпуклый 100-угольник. Докажите, что можно отметить такие 50 точек внутри этого многоугольника, что каждая вершина будет лежать на прямой, проходящей через какие-то две из отмеченных точек.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка