Олимпиадные задачи из источника «36 турнир (2014/2015 год)» для 6-8 класса - сложность 3 с решениями

Император пригласил на праздник 2015 волшебников, добрых и злых, при этом волшебники знают, кто добрый и кто злой, а император – нет. Добрый волшебник всегда говорит правду, а злой говорит что угодно. На празднике император сначала выдаёт каждому волшебнику по бумажке с вопросом (требующим ответа "да" или "нет"), затем волшебники отвечают, и после всех ответов император одного изгоняет. Волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. После этого император вновь выдаёт каждому из оставшихся волшебников по бумажке с вопросом, вновь одного изгоняет, и так далее, пока император не решит остановиться (это возможно после любого из ответов, и после остановки можно никого не изгонять). Докажите, что император может изгнать всех злых волшебни...

а) В таблицу 2×<i>n</i> (где  <i>n</i> > 2)  вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.

б) В таблицу 100×100 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?

Внутри окружности расположен равносторонний <i>N</i>-угольник. Каждую его сторону продлевают в обе стороны до пересечения с окружностью, получая по два новых отрезка, расположенных вне многоугольника. Затем некоторые из 2<i>N</i> полученных отрезков красятся в красный цвет, а остальные – в синий цвет. Докажите, что можно раскрасить эти отрезки так, чтобы сумма длин красных отрезков равнялась сумме длин синих.

а) В таблицу 2×<i>n</i> (где  <i>n</i> > 2)  вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.

б) В таблицу 10×10 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?

Каждая сторона некоторого многоугольника обладает таким свойством: на прямой, содержащей эту сторону, лежит ещё хотя бы одна вершина многоугольника. Может ли число вершин этого многоугольника

  а) не превосходить девяти;

  б) не превосходить восьми?

а) Натуральные числа <i>x, x</i>² и <i>x</i>³ начинаются с одной и той же цифры. Обязательно ли эта цифра – единица?

б) Тот же вопрос для натуральных чисел <i>x, x</i>², <i>x</i>³, ..., <i>x</i><sup>2015</sup>.

Дано  2<i>n</i> + 1  число (<i>n</i> – натуральное), среди которых одно число равно 0, два числа равны 1, два числа равны 2, ..., два числа равны <i>n</i>. Для каких <i>n</i> эти числа можно записать в одну строку так, чтобы для каждого натурального <i>m</i> от 1 до <i>n</i> между двумя числами, равными <i>m</i>, было расположено ровно <i>m</i> других чисел?

Петя подсчитал количество всех возможных <i>m</i>-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2<i>m</i>-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

Назовём натуральное число <i>ровным</i>, если в его записи все цифры одинаковы (например: 4, 111, 999999).

Докажите, что любое <i>n</i>-значное число можно представить как сумму не более чем  <i>n</i> + 1  ровных чисел.

Внутри прямоугольного треугольника построили две равные окружности так, что первая касается одного из катетов и гипотенузы, вторая касается другого катета и гипотенузы, а ещё эти окружности касаются друг друга. Пусть <i>M</i> и <i>N</i> – точки касания окружностей с гипотенузой. Докажите, что середина отрезка <i>MN</i> лежит на биссектрисе прямого угла треугольника.

На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.

Даны <i>N</i> прямоугольных треугольников  (<i>N</i> > 1).  У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что все исходные треугольники подобны.

Даны 15 целых чисел, среди которых нет одинаковых. Петя записал на доску все возможные суммы по 7 из этих чисел, а Вася – все возможные суммы по 8 из этих чисел. Могло ли случиться, что они выписали на доску одни и те же наборы чисел? (Если какое-то число повторяется несколько раз в наборе у Пети, то и у Васи оно должно повторяться столько же раз.)

Даны <i>N</i> прямоугольных треугольников. У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что у всех исходных треугольников одно и то же отношение большего катета к меньшему, если

  а)  <i>N</i> = 2;

  б)  <i>N</i> – любое натуральное число, большее 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка