Олимпиадные задачи из источника «36 турнир (2014/2015 год)» для 7 класса

На какое наименьшее количество квадратов можно разрезать лесенку из 15 ступеней (см. рисунок)? Резать можно только по границам клеток. <div align="center"><img src="/storage/problem-media/65152/problem_65152_img_2.gif"></div>

Можно ли раскрасить грани куба в три цвета так, чтобы каждый цвет присутствовал, но нельзя было увидеть одновременно грани всех трёх цветов, откуда бы мы ни взглянули на куб? (Одновременно можно увидеть только три любые грани, имеющие общую вершину.)

Петя подсчитал количество всех возможных <i>m</i>-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2<i>m</i>-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

Дана квадратная таблица. В каждой её клетке стоит либо плюс, либо минус, причём всего плюсов и минусов поровну.

Докажите, что или в каких-то двух строках, или в каких-то двух столбцах одинаковое количество плюсов.

С начала учебного года Андрей записывал свои оценки по математике. Получая очередную оценку (2, 3, 4 или 5), он называл её <i>неожиданной</i>, если до этого момента она встречалась реже каждой из всех остальных возможных оценок. (Например, если бы он получил с начала года подряд оценки 3, 4, 2, 5, 5, 5, 2, 3, 4, 3, то неожиданными были бы первая пятерка и вторая четвёрка.) За весь учебный год Андрей получил 40 оценок – по 10 пятерок, четвёрок, троек и двоек (неизвестно, в каком порядке). Можно ли точно сказать, сколько оценок были для него неожиданными?

Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя

  а) ровно в шесть раз;

  б) ровно в пять раз?

Есть 99 палочек с длинами 1, 2, 3, ..., 99. Можно ли из них сложить контур какого-нибудь прямоугольника?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка