Олимпиадные задачи из источника «7 турнир (1985/1986 год)» для 10-11 класса - сложность 1-3 с решениями
7 турнир (1985/1986 год)
НазадИгра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру <i>А</i> передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.
Дана невозрастающая последовательность неотрицательных чисел <i>a</i><sub>1</sub> ≥ <i>a</i><sub>2</sub> ≥ <i>a</i><sub>3</sub> ≥ ... ≥ <i>a</i><sub>2<i>k</i>+1</sub> ≥ 0.
Докажите неравенство: <img align="absmiddle" src="/storage/problem-media/97905/problem_97905_img_2.gif">
Функция <i>F</i> задана на всей вещественной оси, причём для любого <i>x</i> имеет место равенство: <i>F</i>(<i>x</i> + 1)<i>F</i>(<i>x</i>) + <i>F</i>(<i>x</i> + 1) + 1 = 0.
Докажите, что функция <i>F</i> не может быть непрерывной.
На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?
При каком натуральном <i>K</i> величина <img align="absmiddle" src="/storage/problem-media/97900/problem_97900_img_2.gif"> достигает максимального значения?
На горе 1001 ступенька, на некоторых лежат камни, по одному на ступеньке. Сизиф берёт любой камень и переносит его на ближайшую сверху свободную ступеньку (то есть, если следующая ступенька свободна то на неё, а если занята, то на несколько ступенек вверх до первой свободной). После этого Аид скатывает на одну ступеньку вниз один из камней, у которых предыдущая ступенька свободна. Камней 500, и первоначально они лежали на нижних 500 ступеньках. Сизиф и Аид действуют по очереди, начинает Сизиф. Его цель – положить камень на верхнюю ступеньку. Может ли Аид ему помешать?
20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.
Через вершины <i>A</i> и <i>B</i> треугольника <i>ABC</i> проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.
В треугольнике <i>ABC</i> проведены высота <i>AH</i> и биссектриса <i>BE</i>. Известно, что угол <i>BEA</i> равен 45°. Докажите, что угол <i>EHC</i> равен 45°.
Дан выпуклый четырёхугольник и точка <i>M</i> внутри него. Доказать, что сумма расстояний от точки <i>M</i> до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.
Последовательность чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ... такова, что <i>x</i><sub>1</sub> = ½ и <img align="absmiddle" src="/storage/problem-media/97884/problem_97884_img_2.gif"> для всякого натурального <i>k</i>.
Найдите целую часть суммы <img align="absmiddle" src="/storage/problem-media/97884/problem_97884_img_3.gif">
Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.
Чему равна вероятность того, что у второго монета упала орлом большее число раз, чем у первого?