Олимпиадные задачи из источника «Региональный этап» для 10 класса

Докажите, что уравнение  <i>x</i>³ + <i>y</i>³ = 4(<i>x</i>²<i>y + xy</i>² + 1)  не имеет решений в целых числах.

В колоде<i> n </i>карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?

Докажите, что для любых действительных чисел <i>a</i> и <i>b</i> справедливо неравенство  <i>a</i>² + <i>ab + b</i>² ≥ 3(<i>a + b</i> – 1).

Докажите, что   <img align="absmiddle" src="/storage/problem-media/109540/problem_109540_img_2.gif">

У каждого из жителей города<i> N </i>знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города<i> N </i>из двух кандидатов, что в них примет участие не менее половины жителей.

Решите в положительных числах систему уравнений     <img src="/storage/problem-media/109538/problem_109538_img_2.gif">

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.

Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)

Семь треугольных пирамид стоят на столе. Для любых трех из них существует горизонтальная плоскость, которая пересекает их по треугольникам равной площади. Доказать, что существует плоскость, пересекающая все семь пирамид по треугольникам равной площади.

На доске написано:  <i>x</i>³ + ...<i>x</i>² + ...<i>x</i> + ... = 0.  Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?

Дан правильный 2<i>n</i>-угольник.

Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

Точка <i>O</i> – основание высоты четырёхугольной пирамиды. Сфера с центром <i>O</i> касается всех боковых граней пирамиды. Точки <i>A, B, C</i> и <i>D</i> взяты последовательно по одной на боковых ребрах пирамиды так, что отрезки <i>AB, BC</i> и <i>CD</i> проходят через три точки касания сферы с гранями.

Докажите, что отрезок <i>AD</i> проходит через четвёртую точку касания.

Докажите, что для любого натурального  <i>n</i> > 2  число   <img align="absmiddle" src="/storage/problem-media/109530/problem_109530_img_2.gif">   делится на 8.

Найдите все натуральные числа <i>n</i>, для которых сумма цифр числа 5<i><sup>n</sup></i> равна 2<i><sup>n</sup></i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка