Олимпиадные задачи из источника «2002-2003» для 10-11 класса - сложность 3-4 с решениями

На плоскости даны точки<i> A<sub>1</sub> </i>,<i> A<sub>2</sub> </i>,<i> A<sub>n</sub> </i>и точки<i> B<sub>1</sub> </i>,<i> B<sub>2</sub> </i>,<i> B<sub>n</sub> </i>. Докажите, что точки<i> B<sub>i</sub> </i>можно перенумеровать так, что для всех<i> i<img src="/storage/problem-media/110807/problem_110807_img_2.gif"> j </i>угол между векторами<i> <img src="/storage/problem-media/110807/problem_110807_img_3.gif"> </i>и<i> <img src="/storage/problem-media/110807/problem_110807_img_4.gif"> </i>– острый или прямой.

Докажите, что из любых шести четырёхзначных чисел, взаимно простых в совокупности, всегда можно выбрать пять чисел, также взаимно простых в совокупности.

На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.

Какое наибольшее число людей могло остаться в конце?

Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)

Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности.

Пусть <i>A</i><sub>0</sub> – середина стороны <i>BC</i> треугольника <i>ABC</i>, а <i>A'</i> – точка касания с этой стороной вписанной окружности. Построим окружность Ω с центром в <i>A</i><sub>0</sub> и проходящую через <i>A'</i>. На других сторонах построим аналогичные окружности. Докажите, что если Ω касается описанной окружности на дуге <i>BC</i>, не содержащей <i>A</i>, то еще одна из построенных окружностей касается описанной окружности.

На плоскости отметили <i>n</i>  (<i>n</i> > 2)  прямых, проходящих через одну точку <i>O</i> таким образом, что для каждых двух из них найдётся такая отмеченная прямая, которая делит пополам одну из пар вертикальных углов, образованных этими прямыми. Докажите, что проведённые прямые делят полный угол на равные части.

На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?

Найдите все углы<i> α </i>, для которых набор чисел<i> sinα </i>,<i> sin</i>2<i>α </i>,<i> sin</i>3<i>α </i>совпадает с набором<i> cosα </i>,<i> cos</i>2<i>α </i>,<i> cos</i>3<i>α </i>.

Дан тетраэдр<i>ABCD</i>. Вписанная в него сфера σ касается грани<i>ABC</i>в точке<i>T</i>. Сфера σ' касается грани<i>ABC</i>в точке<i>T'</i>и продолжений граней<i>ABD, BCD, CAD</i>. Докажите, что прямые<i>AT</i>и<i>AT'</i>симметричны относительно биссектрисы угла<i>BAC</i>.

Квадратные трёхчлены  <i>P</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>  и  <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>cx + d</i>  таковы, что уравнение  <i>P</i>(<i>Q</i>(<i>x</i>)) = <i>Q</i>(<i>P</i>(<i>x</i>))  не имеет действительных корней.

Докажите, что  <i>b ≠ d </i>.

Функции  <i>f</i>(<i>x</i>) – <i>x</i>  и  <i>f</i>(<i>x</i>²) – <i>x</i><sup>6</sup>  определены при всех положительных <i>x</i> и возрастают.

Докажите, что функция   <img align="absmiddle" src="/storage/problem-media/110122/problem_110122_img_2.gif">   также возрастает при всех положительных <i>x</i>.

Найдите все простые <i>p</i>, для каждого из которых существуют такие натуральные <i>x</i> и <i>y</i>, что  <i>p<sup>x</sup> = y</i>³ + 1.

На сторонах <i>AP</i> и <i>PD</i> остроугольного треугольника <i>APD</i> выбраны соответственно точки <i>B</i> и <i>C</i>. Диагонали четырёхугольника <i>ABCD</i> пересекаются в точке <i>Q</i>. Точки <i>H</i><sub>1</sub> и <i>H</i><sub>2</sub> являются ортоцентрами треугольников <i>APD</i> и <i>BPC</i> соответственно. Докажите, что если прямая <i>H</i><sub>1</sub><i>H</i><sub>2</sub> проходит через точку <i>X</i> пересечения описанных окружностей треугольников <i>ABQ</i> и <i>CDQ</i>, то она проходит и через точку <i>Y</i> пересечения описанны...

Пусть <i>a, b, c</i> – положительные числа, сумма которых равна 1. Докажите неравенство:   <img align="middle" src="/storage/problem-media/109792/problem_109792_img_2.gif">

В стране <i>n</i> городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.

Последовательность {<i>a<sub>n</sub></i>} строится следующим образом:  <i>a</i><sub>1</sub> = <i>p</i>  – простое число, имеющее ровно 300 ненулевых цифр, <i>a</i><sub><i>n</i>+1</sub> – период десятичной дроби <sup>1</sup>/<sub><i>a<sub>n</sub></i></sub>, умноженный на 2. Найдите число <i>a</i><sub>2003</sub>.

На прямой расположены2<i>k-</i>1белый и2<i>k-</i>1черный отрезок. Известно, что любой белый отрезок пересекается хотя бы с<i> k </i>черными, а любой черный – хотя бы с<i> k </i>белыми. Докажите, что найдутся черный отрезок, пересекающийся со всеми белыми, и белый отрезок, пересекающийся со всеми черными.

Числовое множество <i>M</i>, содержащее 2003 различных числа, таково, что для каждых двух различных элементов <i>a, b</i> из <i>M</i> число

<img align="absmiddle" src="/storage/problem-media/109787/problem_109787_img_2.gif">   рационально. Докажите, что для любого <i>a</i> из <i>M</i> число  <img align="absmiddle" src="/storage/problem-media/109787/problem_109787_img_3.gif">  рационально.

Найдите наибольшее натуральное число <i>N</i>, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше <i>N</i>.

Последовательность натуральных чисел <i>a<sub>n</sub></i> строится следующим образом: <i>a</i><sub>0</sub> – некоторое натуральное число;  <i>a</i><sub><i>n</i>+1</sub> = &frac15; <i>a<sub>n</sub></i>,  если <i>a<sub>n</sub></i> делится на 5;

<i>a</i><sub><i>n</i>+1</sub> = [<img align="absmiddle" src="/storage/problem-media/109784/problem_109784_img_2.gif"> <i>a<sub>n</sub></i>],  если <i>a<sub>n</sub></i> не делится на 5. Докажите, что начиная с некоторого члена последовательность <i>a<sub>n</sub></i> возрастает.

Дано дерево с <i>n</i> вершинами,  <i>n</i> ≥ 2.  В его вершинах расставлены числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x<sub>n</sub></i>, а на каждом ребре записано произведение чисел, стоящих в концах этого ребра. Обозначим через <i>S</i> сумму чисел на всех рёбрах. Докажите, что   <img align="absmiddle" src="/storage/problem-media/109782/problem_109782_img_2.gif">

Числовое множество<i> M </i>, содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов<i> a,b,c </i>из<i> M </i>число<i> a</i>2<i>+bc </i>рационально. Докажите, что можно выбрать такое натуральное<i> n </i>, что для любого<i> a </i>из<i> M </i>число<i> a<img src="/storage/problem-media/109780/problem_109780_img_2.gif"> </i>рационально.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка