Олимпиадные задачи из источника «2006-2007» для 10-11 класса - сложность 3 с решениями
2006-2007
НазадОкружность проходит через вершины <i>B</i> и <i>C</i> треугольника <i>ABC</i> и пересекает стороны <i>AB</i> и <i>AC</i> в точках <i>D</i> и <i>E</i> соответственно. Отрезки <i>CD</i> и <i>BE</i> пересекаются в точке <i>O</i>. Пусть <i>M</i> и <i>N</i> – центры окружностей, вписанных соответственно в треугольники <i>ADE</i> и <i>ODE</i>. Докажите, что середина меньшей дуги <i>DE</i> лежат на прямой <i>MN</i>.
В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?
В клетках таблицы 10×10 произвольно расставлены натуральные числа от 1 до 100, каждое по одному разу. За один ход разрешается поменять местами любые два числа. Докажите, что за 35 ходов можно добиться того, чтобы сумма каждых двух чисел, стоящих в клетках с общей стороной, была составной.
Дан остроугольный треугольник <i>ABC</i>. Точки <i>M</i> и <i>N</i> – середины сторон <i>AB</i> и <i>BC</i> соответственно, точка <i>H</i> – основание высоты, опущенной из вершины <i>B</i>. Описанные окружности треугольников <i>AHN</i> и <i>CHM</i> пересекаются в точке <i>P</i> (<i>P ≠ H</i>). Докажите, что прямая <i>PH</i> проходит через середину отрезка <i>MN</i>.
В каждой вершине выпуклого 100-угольника написано по два различных числа. Докажите, что можно вычеркнуть по одному числу в каждой вершине так, чтобы оставшиеся числа в каждых двух соседних вершинах были различными.
В треугольнике <i>ABC</i> проведена биссектриса <i>BB</i><sub>1</sub>. Перпендикуляр, опущенный из точки <i>B</i><sub>1</sub> на <i>BC</i>, пересекает дугу <i>BC</i> описанной окружности треугольника <i>ABC</i> в точке <i>K</i>. Перпендикуляр опущенный из точки <i>B</i> на <i>AK</i> пересекает <i>AC</i> в точке <i>L</i>. Докажите что точки <i>K, L</i> и середина дуги <i>AC</i> (не содержащей точку <i>B</i>) лежат на одной прямой.
Приведённые квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что уравнения <i>f</i>(<i>g</i>(<i>x</i>)) = 0 и <i>g</i>(<i>f</i>(<i>x</i>)) = 0 не имеют вещественных корней.
Докажите, что хотя бы одно из уравнений <i>f</i>(<i>f</i>(<i>x</i>)) = 0 и <i>g</i>(<i>g</i>(<i>x</i>)) = 0 тоже не имеет вещественных корней.
Дан набор из<i> n></i>2векторов. Назовем вектор набора длинным, если его длина не меньше длины суммы остальных векторов набора. Докажите, что если каждый вектор набора– длинный, то сумма всех векторов набора равна нулю.
Дан многочлен <i>P</i>(<i>x</i>) = <i>a</i><sub>0</sub><i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i>. Положим <i>m</i> = min {<i>a</i><sub>0</sub>, <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub>, ..., <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i>}.
Докажите, что <i>P</i>(<i>x</i>) ≥ <i>mx<sup>n</sup></i>...
Грани куба 9×9×9 разбиты на единичные клетки. Куб оклеен без наложений бумажными полосками 2×1 (стороны полосок идут по сторонам клеток). Докажите, что число согнутых полосок нечётно.
В бесконечной последовательности (<i>x<sub>n</sub></i>) первый член <i>x</i><sub>1</sub> – рациональное число, большее 1, и <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> + <sup>1</sup>/<sub>[<i>x<sub>n</sub></i>]</sub> при всех натуральных <i>n</i>.
Докажите, что в этой последовательности есть целое число.
Вписанная окружность треугольника <i>ABC</i> касается сторон <i>BC, AC, AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> соответственно. Отрезок <i>AA</i><sub>1</sub> вторично пересекает вписанную окружность в точке <i>Q</i>. Прямая <i>l</i> параллельна <i>BC</i> и проходит через <i>A</i>. Прямые <i>A</i><sub>1</sub><i>C</i><sub>1</sub> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub> пересекают <i>l</i> в точках <i>P</i> и <i>R</i> соответственно. Докажите, что ∠<i...
Докажите, что при<i> k></i>10в произведении <center><i>
f</i>(<i>x</i>)<i> = cos x cos </i>2<i>x cos </i>3<i>x .. cos </i>2<i><sup>k</sup> x
</i></center> можно заменить один<i> cos </i>на<i> sin </i>так, что получится функция<i> f<sub>1</sub></i>(<i>x</i>), удовлетворяющая при всех действительных<i> x </i>неравенству<i> |f<sub>1</sub></i>(<i>x</i>)<i>|<img src="/storage/problem-media/111826/problem_111826_img_2.gif"> <img src="/storage/problem-media/111826/problem_111826_img_3.gif"> </i>.
В классе учится 15 мальчиков и 15 девочек. В день 8 Марта некоторые мальчики позвонили некоторым девочкам и поздравили их с праздником (никакой мальчик не звонил одной и той же девочке дважды). Оказалось, что детей можно единственным образом разбить на 15 пар так, чтобы в каждой паре оказались мальчик с девочкой, которой он звонил. Какое наибольшее число звонков могло быть сделано?
В натуральном числе <i>A</i> переставили цифры, получив число <i>B</i>. Известно, что <img align="top" src="/storage/problem-media/111791/problem_111791_img_2.gif"> Найдите наименьшее возможное значение <i>n</i>.
Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?
Бесконечная возрастающая арифметическая прогрессия, состоящая из натуральных чисел, содержит точный куб натурального числа.
Докажите, что она содержит и точный куб, не являющийся точным квадратом.
В клетках таблицы 15×15 изначально записаны нули. За один ход разрешается выбрать любой её столбец или любую строку, стереть записанные там числа и записать туда все числа от 1 до 15 в произвольном порядке – по одному в каждую клетку. Какую максимальную сумму чисел в таблице можно получить такими ходами?
Дано натуральное число <i>n</i> > 6. Рассматриваются натуральные числа, лежащие в промежутке (<i>n</i>(<i>n</i> – 1), <i>n</i>²) и взаимно простые с <i>n</i>(<i>n</i> – 1).
Докажите, что наибольший общий делитель всех таких чисел равен 1.
Точка<i> D </i>на стороне<i> BC </i>треугольника<i> ABC </i>такова, что радиусы вписанных окружностей треугольников<i> ABD </i>и<i> ACD </i>равны. Докажите, что радиусы окружностей, вневписанных в треугольники<i> ABD </i>и<i> ACD </i>, касающихся соответственно отрезков<i> BD </i>и<i> CD </i>, также равны.
При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств найдется такой набор $B$ из $n$ множеств, что каждое множество набора $A$ является пересечением двух различных множеств набора $B$?
Назовем многогранник хорошим, если его объем (измеренный в<i> м<sup>3</sup> </i>) численно равен площади его поверхности (измеренной в<i> м<sup>2</sup> </i>). Можно ли какой-нибудь хороший тетраэдр разместить внутри какого-нибудь хорошего параллелепипеда?
На плоскости отмечено несколько точек, каждая покрашена в синий, желтый или зеленый цвет. На любом отрезке, соединяющем одноцветные точки, нет точек этого же цвета, но есть хотя бы одна другого цвета. Каково максимально возможное число всех точек?
При каких натуральных <i>n</i> найдутся такие целые <i>a, b, c</i>, что их сумма равна нулю, а число <i>a<sup>n</sup> + b<sup>n</sup> + c<sup>n</sup></i> – простое?
Квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что <i>f</i> '(<i>x</i>)<i>g</i>'(<i>x</i>) ≥ |<i>f</i>(<i>x</i>)| + |<i>g</i>(<i>x</i>)| при всех действительных <i>x</i>.
Докажите, что произведение <i>f</i>(<i>x</i>)<i>g</i>(<i>x</i>) равно квадрату некоторого трёхчлена.