Олимпиадные задачи по математике для 8-9 класса - сложность 3 с решениями

Даны положительные числа <i>x</i>, <i>y</i>, <i>z</i>. Докажите неравенство   <img align="middle" src="/storage/problem-media/116543/problem_116543_img_2.gif">

На доске написано натуральное число. Если на доске написано число <i>x</i>, то можно дописать на нее число  2<i>x</i> + 1  или <sup><i>x</i></sup>/<sub><i>x</i>+2</sub>. В какой-то момент выяснилось, что на доске присутствует число 2008. Докажите, что оно там было с самого начала.

Дан многочлен  <i>P</i>(<i>x</i>) = <i>a</i><sub>0</sub><i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i>.  Положим  <i>m</i> = min {<i>a</i><sub>0</sub>, <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub>, ..., <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i>}.

Докажите, что  <i>P</i>(<i>x</i>) ≥ <i>mx<sup>n</sup></i>...

Известно, что   <img align="absmiddle" src="/storage/problem-media/110215/problem_110215_img_2.gif">   и  <i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + ... + <i>x</i><sub>6</sub> = 0.  Докажите, что <i>x</i><sub>1</sub><i>x</i><sub>2</sub>...<i>x</i><sub>6</sub> ≤ ½.

Докажите, что для каждого<i> x </i>такого, что<i> sin x<img src="/storage/problem-media/110210/problem_110210_img_2.gif"> </i>0, найдется такое натуральное<i> n </i>, что<i> | sin nx| <img src="/storage/problem-media/110210/problem_110210_img_3.gif"> <img src="/storage/problem-media/110210/problem_110210_img_4.gif"> </i>.

Докажите, что   <img align="absmiddle" src="/storage/problem-media/110180/problem_110180_img_2.gif">   для  <i>x</i> > 0  и натурального <i>n</i>.

Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль?

Даны целые числа <i>a, b</i> и <i>c,  c ≠ b</i>.  Известно, что квадратные трёхчлены  <i>ax</i>² + <i>bx + c</i>  и  (<i>c – b</i>)<i>x</i>² + (<i>c – a</i>)<i>x</i> + (<i>a + b</i>)  имеют общий корень (не обязательно целый). Докажите, что  <i>a + b</i> + 2<i>c</i>  делится на 3.

По данному натуральному числу <i>a</i><sub>0</sub> строится последовательность {<i>a<sub>n</sub></i>} следующим образом   <img align="absmiddle" src="/storage/problem-media/110036/problem_110036_img_2.gif">   если <i>a<sub>n</sub></i> нечётно, и <sup><i>a</i><sub>0</sub></sup>/<sub>2</sub>, если <i>a<sub>n</sub></i> чётно. Докажите, что при любом нечётном  <i>a</i><sub>0</sub> > 5  в последовательности {<i>a<sub>n</sub></i>} встретятся сколь угодно большие числа.

Для неотрицательных чисел <i>x</i> и <i>y</i>, не превосходящих 1, докажите, что   <img align="absmiddle" src="/storage/problem-media/110027/problem_110027_img_2.gif">

Последовательность натуральных чисел <i>a<sub>n</sub></i> строится следующим образом: <i>a</i><sub>0</sub> – некоторое натуральное число;  <i>a</i><sub><i>n</i>+1</sub> = &frac15; <i>a<sub>n</sub></i>,  если <i>a<sub>n</sub></i> делится на 5;

<i>a</i><sub><i>n</i>+1</sub> = [<img align="absmiddle" src="/storage/problem-media/109784/problem_109784_img_2.gif"> <i>a<sub>n</sub></i>],  если <i>a<sub>n</sub></i> не делится на 5. Докажите, что начиная с некоторого члена последовательность <i>a<sub>n</sub></i> возрастает.

Докажите, что для любого натурального числа  <i>n</i> > 10000  найдётся такое натуральное число <i>m</i>, представимое в виде суммы двух квадратов, что

 0 < <i>m – n</i> < 3 <img align="absmiddle" src="/storage/problem-media/109761/problem_109761_img_2.gif"> .

Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.

Совершенное число, большее 28, делится на 7. Докажите, что оно делится на 49.

Докажите, что при любом натуральном <i>n</i> справедливо неравенство   <img align="absmiddle" src="/storage/problem-media/109704/problem_109704_img_2.gif">

Верно ли, что для любых трёх различных натуральных чисел <i>a, b</i> и <i>c</i> найдётся квадратный трёхчлен с целыми коэффициентами и положительным старшим коэффициентом, принимающий в некоторых целых точках значения <i>a</i>³, <i>b</i>³ и <i>c</i>³?

Сумма положительных чисел <i>a, b, c</i> и <i>d</i> равна 3. Докажите неравенство   <sup>1</sup>/<sub><i>a</i>³</sub> + <sup>1</sup>/<sub><i>b</i>³</sub> + <sup>1</sup>/<sub><i>c</i>³</sub> + <sup>1</sup>/<sub><i>d</i>³</sub> ≤ <sup>1</sup>/<sub><i>a</i>³<i>b</i><sup>3</sup><i>c</i>³<i>d</i>³</sub>.

Сумма положительных чисел <i>a, b, c</i> и <i>d</i> равна 3. Докажите неравенство   <sup>1</sup>/<sub><i>a</i>²</sub> + <sup>1</sup>/<sub><i>b</i>²</sub> + <sup>1</sup>/<sub><i>c</i>²</sub> + <sup>1</sup>/<sub><i>d</i>²</sub> ≤ <sup>1</sup>/<sub><i>a</i>²<i>b</i>²<i>c</i>²<i>d</i>²</sub>.

Числа <i>a, b, c</i> и <i>d</i> таковы, что  <i>a</i>² + <i>b</i>² + <i>c</i>² + <i>d</i>² = 4.  Докажите, что  (2 + <i>a</i>)(2 + <i>b</i>) ≥ <i>cd</i>.

Дана функция <i>f</i>, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых <i>x</i> и <i>y</i>, таких, что  <i>x > y</i>,  верно неравенство  (<i>f</i>(<i>x</i>))² ≤ <i>f</i>(<i>y</i>).  Докажите, что множество значений функции содержится в промежутке  [0,1].

Какое из чисел больше:  (100!)!  или  99!<sup>100!</sup>·100!<sup>99!</sup>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка