Олимпиадные задачи по теме «Алгебраические неравенства и системы неравенств» для 11 класса - сложность 2 с решениями
Алгебраические неравенства и системы неравенств
НазадНайдите наибольшее значение выражения <i>х + у</i>, если <img align="absmiddle" src="/storage/problem-media/116997/problem_116997_img_2.gif"> <i>x</i> ∈ [0, <sup>3π</sup>/<sub>2</sub>], <i>y</i> ∈ [π, 2π].
Найдите наибольшее значение выражения <i>ab + bc + ac + abc</i>, если <i>a + b + c</i> = 12 (<i>a, b</i> и <i>с</i> – неотрицательные числа).
Сравните: sin 3 и sin 3°.
Натуральные числа <i>d</i> и <i>d' > d</i> – делители натурального числа <i>n</i>. Докажите, что <i>d' > d</i> + <sup><i>d</i>²</sup>/<sub><i>n</i></sub>.
Решите неравенство: [<i>x</i>]·{<i>x</i>} < <i>x</i> – 1.
Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.
Найдите все неотрицательные решения системы уравнений:
<i>x</i>³ = 2<i>y</i>² – <i>z</i>,
<i>y</i>³ = 2<i>z</i>² – <i>x</i>,
<i>z</i>³ = 2<i>x</i>² – <i>y</i>.
Найдите наибольшее значение выражения <i>x</i>²<i>y</i> – <i>y</i>²<i>x</i>, если 0 ≤ <i>x</i> ≤ 1 и 0 ≤ <i>y</i> ≤ 1.
Пусть <i>a, b, c</i> – длины сторон произвольного треугольника; <i>p</i> – полупериметр; <i>r</i> – радиус вписанной окружности. Докажите неравенство <div align="center"><img src="/storage/problem-media/115857/problem_115857_img_2.gif"></div>
Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?
Для вещественных <i>x > y</i> > 0 и натуральных <i>n > k</i> докажите неравенство (<i>x<sup>k</sup> – y<sup>k</sup></i>)<sup><i>n</i></sup> < (<i>x<sup>n</sup> – y<sup>n</sup></i>)<sup><i>k</i></sup>.
В сферу радиуса 1 вписан параллелепипед, объём которого равен <img src="/storage/problem-media/110484/problem_110484_img_2.gif">. Найдите площадь полной поверхности параллелепипеда.
В сферу радиуса <img align="absmiddle" src="/storage/problem-media/110483/problem_110483_img_2.gif"> вписан параллелепипед, объём которого равен 8. Найдите площадь полной поверхности параллелепипеда.
Что больше: <img align="middle" src="/storage/problem-media/109435/problem_109435_img_2.gif"> или <img align="middle" src="/storage/problem-media/109435/problem_109435_img_3.gif"> ?
В данный прямоугольный треугольник вписать прямоугольник наибольшей площади так, чтобы все вершины прямоугольника лежали на сторонах треугольника.
Достаточно ли для изготовления закрытой со всех сторон прямоугольной коробки, вмещающей не менее 1995 единичных кубиков,
а) 962; б) 960; в) 958 квадратных единиц материала?
<i>a, b, c</i> – стороны треугольника. Докажите неравенство <img align="middle" src="/storage/problem-media/105065/problem_105065_img_2.gif">
Пусть <i>x, y, z</i> – любые числа из интервала (0, <sup>π</sup>/<sub>2</sub>). Докажите неравенство <img align="absmiddle" src="/storage/problem-media/98588/problem_98588_img_2.gif">
Докажите неравенство <img align="absmiddle" src="/storage/problem-media/98473/problem_98473_img_2.gif"> при любых натуральных <i>n</i> и <i>k</i>.
На плоскости даны три точки <i>A, B, C</i>. Через точку <i>C</i> проведите прямую так, чтобы произведение расстояний от этой прямой до <i>A</i> и <i>B</i> было максимальным. Всегда ли такая прямая единственна?
Числа 2<sup>1989</sup> и 5<sup>1989</sup> выписали одно за другим (в десятичной записи). Сколько всего цифр выписано?
Каковы первые четыре цифры числа 1<sup>1</sup> + 2² + 3³ + ... + 999<sup>999</sup> + 1000<sup>1000</sup>?
Доказать, что в десятичной записи чисел 2<sup><i>n</i></sup> + 1974<sup><i>n</i></sup> и 1974<sup><i>n</i></sup> содержится одинаковое количество цифр.
По заданной последовательности положительных чисел <i>q</i><sub>1</sub>,..., <i>q<sub>n</sub></i>, ... строится последовательность многочленов следующим образом:
<i>f</i><sub>0</sub>(<i>x</i>) = 1,
<i>f</i><sub>1</sub>(<i>x</i>) = <i>x</i>,
...
<i>f</i><sub><i>n</i>+1</sub>(<i>x</i>) = (1 + <i>q<sub>n</sub></i>)<i>xf<sub>n</sub></i>(<i>x</i>) – <i>q<sub>n</sub>f</i><sub><i>n</i>–1</sub>(<i>x</i>).
Докажите, что все вещественные корни <i>n</i>-го мног...
Все коэффициенты многочлена равны 1, 0 или –1. Докажите, что все его действительные корни (если они существуют) заключены в отрезке [–2, 2].