Олимпиадные задачи по теме «Алгебраические неравенства и системы неравенств» - сложность 3 с решениями

Найдите все пары простых чисел <i>p</i> и <i>q</i>, обладающие следующим свойством:  7<i>p</i> + 1  делится на <i>q</i>, а  7<i>q</i> + 1  делится на <i>p</i>.

Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства   <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif">   Докажите, что  <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.

Положительные действительные числа    <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>  и <i>k</i> таковы, что  <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i> = 3<i>k</i>,   <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_2.gif">   и   <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_3.gif"> .

Докажите, что какие-то два из чисел  <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>  отличаются больше чем на 1.

Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.

Докажите, что сумма длин этих отрезков не меньше, чем   <img align="absmiddle" src="/storage/problem-media/116727/problem_116727_img_2.gif"> .

Для  <i>n</i> = 1, 2, 3  будем называть числом <i>n</i>-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию

1,  (<i>n</i> + 2),  (<i>n</i> + 2)²,  ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.

Целые числа <i>a</i> и <i>b</i> таковы, что при любых натуральных <i>m</i> и <i>n</i> число  <i>am</i>² + <i>bn</i>²  является точным квадратом. Докажите, что  <i>ab</i> = 0.

Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство  (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).

Даны положительные числа <i>x</i>, <i>y</i>, <i>z</i>. Докажите неравенство   <img align="middle" src="/storage/problem-media/116543/problem_116543_img_2.gif">

Сравните числа   <img align="absmiddle" src="/storage/problem-media/116374/problem_116374_img_2.gif">

Квадратная доска разделена на <i>n</i>² прямоугольных клеток  <i>n</i> – 1  горизонтальными и  <i>n</i> – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все <i>n</i> клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

Докажите, что если  <i>x</i> > 0,  <i>y</i> > 0,  <i>z</i> > 0 и  <i>x</i>² + <i>y</i>² + <i>z</i>² = 1,  то  <img align="absmiddle" src="/storage/problem-media/115995/problem_115995_img_2.gif">,  и укажите, в каком случае достигается равенство.

Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений.   а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

  б) Докажите, что таких троек найдется не менее шести (тройки, отличающиеся только порядком чисел, считаем одинаковыми).

Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру <i>А</i> передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Внутри стороны <i>BC</i> правильного треугольника <i>ABC</i> взята точка <i>D</i>. Прямая, проходящая через точку <i>C</i> и параллельная <i>AD</i>, пересекает прямую <i>AB</i> в точке <i>E</i>. Докажите, что   <img align="absmiddle" src="/storage/problem-media/115920/problem_115920_img_2.gif">

Дан четырёхугольник <i>ABCD</i>. Оказалось, что описанная окружность треугольника <i>ABC</i>, касается стороны <i>CD</i>, а описанная окружность треугольника <i>ACD</i> касается стороны <i>AB</i>. Докажите, что диагональ <i>AC</i> меньше, чем расстояние между серединами сторон <i>AB</i> и <i>CD</i>.

Докажите, что если числа <i>x, y, z</i> при некоторых значениях <i>p</i> и <i>q</i> являются решениями системы

     <i>y = x<sup>n</sup> + px + q,  z = y<sup>n</sup> + py + q,  x = z<sup>n</sup> + pz + q</i>,

то выполнено неравенство  <i>x</i>²<i>y + y</i>²<i>z + z</i>²<i>x ≥ x</i>²<i>z + y</i>²<i>x + z</i>²<i>y</i>.

Рассмотрите случаи   а)  <i>n</i> = 2;   б)  <i>n</i> = 2010.

У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются <i>товарищами</i>, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?

Числа <i>a, b</i> и <i>c</i> таковы, что  (<i>a + b</i>)(<i>b + c</i>)(<i>c + a</i>) = <i>abc</i>,  (<i>a</i>³ + <i>b</i>³)(<i>b</i>³ + <i>c</i>³)(<i>c</i>³ + <i>a</i><sup>3</sup>) = <i>a</i>³<i>b</i>³<i>c</i>³.  Докажите, что  <i>abc</i> = 0.

Дано натуральное  <i>n</i> > 1.  Число  <i>a > n</i>²  таково, что среди чисел  <i>a</i> + 1, <i>a</i> + 2, ..., <i>a + n</i>  есть кратные каждого из чисел  <i>n</i>² + 1, <i>n</i>² + 2, ..., <i>n</i>² + <i>n</i>.

Докажите, что  <i>a > n</i><sup>4</sup> – <i>n</i>³.

В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть <i>S</i> – минимальное из этих расстояний. Какое наибольшее значение может принимать <i>S</i>?

Числа <i>a, b, c</i> таковы, что уравнение  <i>x</i>³ + <i>ax</i>² + <i>bx + c</i> = 0  имеет три действительных корня. Докажите, что если  –2 ≤ <i>a + b + c</i> ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].

Найдите все такие тройки действительных чисел <i>x, y, z</i>, что  1 + <i>x</i><sup>4</sup> ≤ 2(<i>y – z</i>)² 1 + <i>y</i><sup>4</sup> ≤ 2(<i>z – x</i>)²,  1 + <i>z</i><sup>4</sup> ≤ 2(<i>x – y</i>)².

Дан многочлен  <i>P</i>(<i>x</i>) = <i>a</i><sub>0</sub><i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i>.  Положим  <i>m</i> = min {<i>a</i><sub>0</sub>, <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub>, ..., <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i>}.

Докажите, что  <i>P</i>(<i>x</i>) ≥ <i>mx<sup>n</sup></i>...

Числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> таковы, что  <i>x</i><sub>1</sub> ≥ <i>x</i><sub>2</sub> ≥ ... ≥ <i>x<sub>n</sub></i> ≥ 0  и   <img align="absmiddle" src="/storage/problem-media/111800/problem_111800_img_2.gif">   Докажите, что   <img align="absmiddle" src="/storage/problem-media/111800/problem_111800_img_3.gif">

Даны положительные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>.  Известно, что  <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> + ... + <i>a<sub>n</sub></i> ≤ ½.  Докажите, что  (1 + <i>a</i><sub>1</sub>)(1 + <i>a</i><sub>2</sub>)...(1 + <i>a<sub>n</sub></i>) < 2.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка