Олимпиадные задачи по теме «Последовательности» для 8 класса - сложность 3 с решениями

На кольцевом треке 2<i>n</i> велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее <i>n</i>² встреч.

Дана функция <i>f</i>(<i>x</i>), значение которой при любом целом <i>x</i> целое. Известно, что для любого простого числа <i>p</i> существует такой многочлен <i>Q<sub>p</sub></i>(<i>x</i>) степени, не превышающей 2013, с целыми коэффициентами, что  <i>f</i>(<i>n</i>) – <i>Q<sub>p</sub></i>(<i>n</i>)  делится на <i>p</i> при любом целом <i>n</i>. Верно ли, что существует такой многочлен <i>g</i>(<i>x</i>) с вещественными коэффициентами , что  <i>g</i>(<i>n</i>) = <i>f</i>(<i>n</i>)  для любого целого <i>n</i>?

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из <i>n</i> человек, команда математических – из <i>m</i>, причём  <i>n</i> ≠ <i>m</i>.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

В бесконечной возрастающей последовательности натуральных чисел каждое делится хотя бы на одно из чисел 1005 и 1006, но ни одно не делится на 97. Кроме того, каждые два соседних числа отличаются не более чем на <i>k</i>. При каком наименьшем <i>k</i> такое возможно?

Для каждого натурального <i>n</i> обозначим через <i>S<sub>n</sub></i> сумму первых <i>n</i> простых чисел:  <i>S</i><sub>1</sub> = 2,  <i>S</i><sub>2</sub> = 2 + 3 = 5,  <i>S</i><sub>3</sub> = 2 + 3 + 5 = 10,  ... .

Могут ли два подряд идущих члена последовательности (<i>S<sub>n</sub></i>) оказаться квадратами натуральных чисел?

Бесконечная возрастающая арифметическая прогрессия, состоящая из натуральных чисел, содержит точный куб натурального числа.

Докажите, что она содержит и точный куб, не являющийся точным квадратом.

Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

Последовательность<i> a</i>1<i>, a</i>2<i>,..,a</i>2000действительных чисел такова, что для любого натурального<i> n </i>,1<i><img src="/storage/problem-media/110026/problem_110026_img_2.gif"> n<img src="/storage/problem-media/110026/problem_110026_img_2.gif"></i>2000, выполняется равенство <center><i>

a</i>1<i></i>3<i>+a</i>2<i></i>3<i>+..+a<sub>n</sub></i>3<i>=</i>(<i>a</i>1<i>+a</i>2<i>+..+a<sub>n</sub></i>)<i></i>2<i>.

</i></center> Докажите, что все члены этой последовательности – целые числа.

К натуральному числу<i> A </i>приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до<i> A </i>. Найдите<i> A </i>.

В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4,2<i></i>1998. Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?

Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.

Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

Сумма и произведение двух чисто периодических десятичных дробей – чисто периодические дроби с периодом <i>T</i>.

Докажите, что исходные дроби имеют периоды не больше <i>T</i>.

Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?

Найдите сумму <center> <img src="/storage/problem-media/109715/problem_109715_img_2.gif">

</center>

В классе 33 человека. У каждого ученика спросили, сколько у него в классе тезок и сколько однофамильцев (включая родственников). Оказалось, что среди названных чисел встретились все целые от 0 до 10 включительно. Докажите, что в классе есть два ученика с одинаковыми именем и фамилией.

Последовательность натуральных чисел <i>a<sub>i</sub></i> такова, что  НОД(<i>a<sub>i</sub>, a<sub>j</sub></i>) = НОД(<i>i, j</i>)  для всех  <i>i ≠ j</i>.  Докажите, что  <i>a<sub>i</sub> = i</i>  для всех  <i>i</i> ∈ <b>N</b>.

На карусели с <i>n</i> сиденьями мальчик катался <i>n</i> сеансов подряд. После каждого сеанса он вставал и, двигаясь по часовой стрелке, пересаживался на другое сиденье. Число сидений карусели, мимо которых мальчик проходит при пересаживании, включая и то, на которое он садится, назовём длиной перехода. При каких <i>n</i> за <i>n</i> сеансов мальчик мог побывать на каждом сиденье, если длины всех <i>n</i> – 1  переходов различны и меньше <i>n</i>?

Натуральные числа от 1 до 1000 по одному выписали на карточки, а затем накрыли этими карточками какие-то 1000 клеток прямоугольника1<i>x </i>1994. Если соседняя справа от карточки с числом<i> n </i>клетка свободна, то за один ход ее разрешается накрыть карточкой с числом<i> n+</i>1. Докажите, что нельзя сделать более полумиллиона таких ходов.

Дана последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, в которой <i>a</i><sub>1</sub> не делится на 5 и для всякого <i>n</i>  <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub> + b<sub>n</sub></i>,  где <i>b<sub>n</sub></i> – последняя цифра числа <i>a<sub>n</sub></i>. Докажите, что последовательность содержит бесконечно много степеней двойки.

Назовем усреднением последовательности<i>a<sub>k</sub> </i>действительных чисел последовательность<i>a'<sub>k</sub> </i>с общим членом<i> a'<sub>k</sub>=<img src="/storage/problem-media/109520/problem_109520_img_2.gif"> </i>. Рассмотрим последовательности:<i>a<sub>k</sub> </i>,<i>a'<sub>k</sub> </i>– ее усреднение,<i>a''<sub>k</sub> </i>– усреднение последовательности<i>a'<sub>k</sub> </i>, и т.д. Если все эти последовательности состоят из целых чисел, то будем говорить, что последовательность<i>a<sub>k</sub> </i>– хорошая. Докажите, что если последователь...

Может ли число  1·2 + 2·3 + ... + <i>k</i>(<i>k</i> + 1)  при  <i>k</i> = 6<i>p</i> – 1  быть квадратом?

Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)

Найдите <i>x</i><sub>1000</sub>, если  <i>x</i><sub>1</sub> = 4,  <i>x</i><sub>2</sub> = 6,  и при любом натуральном  <i>n</i> ≥ 3  <i>x<sub>n</sub></i> – наименьшее составное число, большее   2<i>x</i><sub><i>n</i>–1</sub> – <i>x</i><sub><i>n</i>–2</sub>.

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка