Олимпиадные задачи по теме «Логика и теория множеств» для 7 класса

В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.

Карлсон открыл школу, и 1 сентября во всех трёх первых классах было по три урока: Курощение, Низведение и Дуракаваляние. Один и тот же предмет в двух классах одновременно идти не может. Курощение в 1Б было первым уроком. Учитель Дуракаваляния похвалил учеников 1Б: "У вас получается еще лучше, чем у 1А". Низведение на втором уроке было не в 1А. В каком классе валяли дурака на последнем уроке?

Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.

Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?

В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.

  Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".

  Саша: "Я – отец Вали. Я – дочь Жени".

Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.

Известно, что среди 63 монет есть 7 фальшивых. Все фальшивые монеты весят одинаково, все настоящие монеты также весят одинаково, и фальшивая монета легче настоящей. Как за три взвешивания на чашечных весах без гирь определить 7 настоящих монет?

Некоторые жители <i>Острова Разноцветных Лягушек</i> говорят только правду, а остальные всегда лгут. Трое островитян сказали так:

  Бре: На нашем острове нет синих лягушек.

  Ке: Бре лгун. Он же сам синяя лягушка!

  Кекс: Конечно, Бре лгун. Но он красная лягушка.

Водятся ли на этом острове синие лягушки?

Решите ребус:  ЛЕТО + ЛЕС = 2011.

Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?

13 детей сели за круглый стол и договорились, что мальчики будут врать девочкам, а друг другу говорить правду, а девочки, наоборот, будут врать мальчикам, а друг другу говорить правду. Один из детей сказал своему правому соседу: "Большинство из нас мальчики". Тот сказал своему правому соседу: "Большинство из нас девочки", а он своему соседу справа: "Большинство из нас мальчики", а тот своему: "Большинство из нас девочки" и так далее, пока последний ребёнок не сказал первому: "Большинство из нас мальчики". Сколько мальчиков было за столом?

Вот ребус довольно простой:

ЭХ вчетверо больше, чем ОЙ.

АЙ вчетверо больше, чем ОХ.

Найди сумму всех четырёх.

Собираясь в школу, Миша нашёл под подушкой, под диваном, на столе и под столом все необходимое: тетрадь, шпаргалку, плеер и кроссовки. Под столом он нашёл не тетрадь и не плеер. Мишины шпаргалки никогда не валяются на полу. Плеера не оказалось ни на столе, ни под диваном. Что где лежало, если в каждом из мест находился только один предмет?

Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?

Мартышка, Осёл и Козёл затеяли сыграть трио. Уселись чинно в ряд, Мартышка справа. Ударили в смычки, дерут, а толку нет. Поменялись местами, при этом Осёл оказался в центре. А трио всё нейдёт на лад. Пересели ещё раз. При этом оказалось, что каждый из трёх "музыкантов" успел посидеть и слева, и справа, и в центре. Кто где сидел на третий раз?

На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.

Приведите пример таких чисел.

Четверо детей сказали друг о друге так.

<i>Маша</i>:  Задачу решили трое: Саша, Наташа и Гриша.

<i>Саша</i>:  Задачу не решили трое: Маша, Наташа и Гриша.

<i>Наташа</i>:  Маша и Саша солгали.

<i>Гриша</i>:  Маша, Саша и Наташа сказали правду.

Сколько детей на самом деле сказали правду?

На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.

– Интересно, а сколько среди вас рыцарей? – спросил он.

– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.

– Хорошо. Скажи мне каждый: кто твои соседи? – спросил путешественник.

На этот вопрос все ответили одинаково.

– Данных недостаточно! – сказал путешественник.

– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.

– Да, сегодня день его рождения! – сказал его сосед.

И путешественник смог узнать, сколько за столом рыцарей. Действительно, сколько же их?

В равенстве  ТИХО + ТИГР = СПИТ  замените одинаковые буквы одинаковыми цифрами, а разные буквы – разными цифрами так, чтобы ТИГР был бы как можно меньше (нулей среди цифр нет).

Победив Кащея, потребовал Иван золота, чтобы выкупить Василису у разбойников. Привёл его Кащей в пещеру и сказал: "В сундуке лежат золотые слитки. Но просто так их унести нельзя: они заколдованы. Переложи себе в суму один или несколько. Потом я переложу из сумы в сундук один или несколько, но обязательно другое число. Так мы будем по очереди перекладывать их: ты в суму, я в сундук, каждый раз новое число. Когда новое перекладывание станет невозможным, сможешь унести свою суму со слитками". Какое наибольшее число слитков может унести Иван, как бы ни действовал Кащей, если в сундуке исходно лежит  а) 13;  б) 14 золотых слитков? Как ему это сделать?

Вася написал верное утверждение:

  "В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".

А Коля написал фразу:

  "В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".

Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.

Известно, что Шакал всегда лжёт, Лев говорит правду, Попугай просто повторяет последний услышанный ответ (а если его спросить первым, ответит как попало), а Жираф дает честный ответ, но на предыдущий заданный ему вопрос (а на первый вопрос отвечает как попало). Мудрый Ёжик в тумане наткнулся на Шакала, Льва, Попугая и Жирафа и решил выяснить, в каком порядке они стоят. Спросив всех по очереди "Ты Шакал?", он понял только лишь, где Жираф. Спросив всех в том же порядке: "Ты Жираф?", он смог ещё понять, где Шакал, но полной ясности так и не наступило. И лишь после того как на вопрос "Ты Попугай?" первый ответил "Да", Ежу, наконец, стало ясно, в каком порядке стояли животные. Так в каком же?

("Как попало" означает, что один из ответов "Д...

Замените в равенстве   ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК   одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.

Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.

Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?

В вершинах шестиугольника <i>ABCDEF</i> (см. рис.) лежали 6 одинаковых на вид шариков: в <i>A</i> — массой 1 г, в <i>B</i> — 2 г, ..., в <i>F</i> — 6 г. Шутник поменял местами два шарика в противоположных вершинах. Имеются двухчашечные весы, позволяющие узнать, в какой из чаш масса шариков больше. Как за одно взвешивание определить, какие именно шарики переставлены?<div align="center"><img src="/storage/problem-media/116208/problem_116208_img_2.gif"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка