Олимпиадные задачи из источника «32 турнир (2010/2011 год)»

Две фирмы по очереди нанимают программистов, среди которых есть 11 гениев. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен, включая информацию о том, кто гении. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять 10 гениев, как бы ни действовала первая фирма?

Боковые стороны <i>AB</i> и <i>CD</i> трапеции <i>ABCD</i> являются соответственно хордами окружностей ω<sub>1</sub> и ω<sub>2</sub>, касающихся друг друга внешним образом. Градусные меры касающихся дуг <i>AB</i> и <i>CD</i> равны α и β. Окружности ω<sub>3</sub> и ω<sub>4</sub> также имеют хорды <i>AB</i> и <i>CD</i> соответственно. Их дуги <i>AB</i> и <i>CD</i>, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω<sub>3</sub> и ω<sub>4</sub> тоже касаются.

Даны <i>N</i> синих и <i>N</i> красных палочек, причём сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить <i>N</i>-угольник, и из красных – тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю – в красный цвет, а красную – в синий) так, что снова из синих палочек можно будет сложить <i>N</i>-угольник, и из красных – тоже? Решите задачу

  а) для  <i>N</i> = 3;

  б) для произвольного натурального  <i>N</i> > 3.

От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.

  а) Могут ли спилы быть подобными, но не равными треугольниками?

  б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?

В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

Два муравья проползли каждый по своему замкнутому маршруту на доске 7×7. Каждый полз только по сторонам клеток доски и побывал в каждой из 64 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?

Дан остроугольный треугольник <i>ABC</i>; <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> – его высоты. Из точки <i>A</i><sub>1</sub> опустили перпендикуляры на прямые <i>AC</i> и <i>AB</i>, а из точки <i>B</i><sub>1</sub> опустили перпендикуляры на прямые <i>BC</i> и <i>BA</i>. Докажите, что основания перпендикуляров образуют равнобокую трапецию.

Докажите, что для любого натурального числа <i>N</i> найдутся такие две пары натуральных чисел, что суммы в парах одинаковы, а произведения отличаются ровно в <i>N</i> раз.

У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой?

Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 1°.

Найдите сумму абсцисс точек пересечения этих прямых с прямой  <i>y</i> = 100 – <i>x</i>.

В стране 100 городов и несколько дорог. Каждая дорога соединяет два каких-то города, дороги не пересекаются. Из каждого города можно добраться до любого другого, двигаясь по дорогам. Докажите, что можно объявить несколько дорог главными так, чтобы из каждого города выходило нечётное число главных дорог.

Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке.

Докажите, что пятый такой перпендикуляр тоже проходит через эту точку.

По кругу лежат 100 белых камней. Дано целое число <i>k</i> в пределах от 1 до 50. За ход разрешается выбрать любые <i>k</i> подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в чёрный цвет. При каких <i>k</i> можно за несколько таких ходов покрасить все 100 камней в чёрный цвет?

Грани выпуклого многогранника – подобные треугольники.

Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).

Дракон заточил в темницу рыцаря и выдал ему 100 разных монет, половина из которых волшебные (какие именно – знает только дракон). Каждый день рыцарь раскладывает все монеты на две кучки (не обязательно равные). Если в кучках окажется поровну волшебных монет или поровну обычных, дракон отпустит рыцаря. Сможет ли рыцарь гарантированно освободиться не позже, чем

  а) на 50-й день?

  б) на 25-й день?

Дан выпуклый четырёхугольник. Если провести в нём любую диагональ, он разделится на два равнобедренных треугольника. А если провести в нём обе диагонали сразу, он разделится на четыре равнобедренных треугольника. Обязательно ли этот четырёхугольник – квадрат?

Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?

Прямоугольник разбили на 121 прямоугольную клетку десятью вертикальными и десятью горизонтальными прямыми. У 111 клеток периметры целые.

Докажите, что и у остальных десяти клеток периметры целые.

По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают.

Докажите, что разность каких-то двух чисел, стоящих рядом, чётна.

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что  <i>a = b</i>.

Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?

Квадрат <i>ABCD</i> разрезан на одинаковые прямоугольники с целыми длинами сторон. Фигура <i>F</i> является объединением всех прямоугольников, имеющих общие точки с диагональю <i>AC</i>. Докажите, что <i>AC</i> делит площадь фигуры <i>F</i> пополам.

В каждой клетке таблицы 1000×1000 стоит ноль или единица. Докажите, что можно либо вычеркнуть 990 строк так, что каждом столбце будет хотя бы одна невычеркнутая единица, либо вычеркнуть 990 столбцов так, что в каждой строке будет хотя бы один невычеркнутый ноль.

Четырёхугольник <i>ABCD</i> вписан в окружность с центром <i>O</i>, причём точка <i>O</i> не лежит ни на одной из диагоналей этого четырёхугольника. Известно, что центр описанной окружности треугольника <i>AOC</i> лежит на прямой <i>BD</i>. Докажите, что центр описанной окружности треугольника <i>BOD</i> лежит на прямой <i>AC</i>.

Два мага сражаются друг с другом. Вначале они оба парят над морем на высоте 100 метров. Маги по очереди применяют заклинания вида "уменьшить высоту парения над морем на <i>a</i> метров у себя и на <i>b</i> метров у соперника", где <i>a, b</i> – действительные числа,  0 < <i>a</i> < <i>b</i>.  Набор заклинаний у магов один и тот же, их можно использовать в любом порядке и неоднократно. Маг выигрывает дуэль, если после чьего-либо хода его высота над морем будет положительна, а у соперника – нет. Существует ли такой набор заклинаний, что второй маг может гарантированно выиграть (как бы ни действовал первый), если при этом число заклинаний в наборе

  а) конечно;  б) бесконечно?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка