Олимпиадные задачи из источника «36 турнир (2014/2015 год)» для 4-8 класса - сложность 1-4 с решениями
36 турнир (2014/2015 год)
НазадВнутри параллелограмма <i>ABCD</i> отметили точку <i>E</i> так, что <i>CD = CE</i>.
Докажите, что прямая <i>DE</i> перпендикулярна прямой, проходящей через середины отрезков <i>AE</i> и <i>BC</i>.
Император пригласил на праздник 2015 волшебников, добрых и злых, при этом волшебники знают, кто добрый и кто злой, а император – нет. Добрый волшебник всегда говорит правду, а злой говорит что угодно. На празднике император сначала выдаёт каждому волшебнику по бумажке с вопросом (требующим ответа "да" или "нет"), затем волшебники отвечают, и после всех ответов император одного изгоняет. Волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. После этого император вновь выдаёт каждому из оставшихся волшебников по бумажке с вопросом, вновь одного изгоняет, и так далее, пока император не решит остановиться (это возможно после любого из ответов, и после остановки можно никого не изгонять). Докажите, что император может изгнать всех злых волшебни...
а) В таблицу 2×<i>n</i> (где <i>n</i> > 2) вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.
б) В таблицу 100×100 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?
Внутри окружности расположен равносторонний <i>N</i>-угольник. Каждую его сторону продлевают в обе стороны до пересечения с окружностью, получая по два новых отрезка, расположенных вне многоугольника. Затем некоторые из 2<i>N</i> полученных отрезков красятся в красный цвет, а остальные – в синий цвет. Докажите, что можно раскрасить эти отрезки так, чтобы сумма длин красных отрезков равнялась сумме длин синих.
а) В таблицу 2×<i>n</i> (где <i>n</i> > 2) вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.
б) В таблицу 10×10 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?
Каждая сторона некоторого многоугольника обладает таким свойством: на прямой, содержащей эту сторону, лежит ещё хотя бы одна вершина многоугольника. Может ли число вершин этого многоугольника
а) не превосходить девяти;
б) не превосходить восьми?
а) Натуральные числа <i>x, x</i>² и <i>x</i>³ начинаются с одной и той же цифры. Обязательно ли эта цифра – единица?
б) Тот же вопрос для натуральных чисел <i>x, x</i>², <i>x</i>³, ..., <i>x</i><sup>2015</sup>.
Секретная база окружена прозрачным извилистым забором в форме невыпуклого многоугольника, снаружи – болото. Через болото проложена прямая линия электропередач из 36 столбов, часть из которых стоит снаружи базы, а часть – внутри. (Линия электропередач не проходит через вершины забора.) Шпион обходит базу снаружи вдоль забора так, что забор всё время по правую руку от него. Каждый раз, оказавшись на линии электропередач, он считает, сколько всего столбов находится по левую руку от него (он их все видит). К моменту, когда шпион обошёл весь забор, он насчитал в сумме 2015 столбов. Сколько столбов находится внутри базы?
Петя сложил 100 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?
Дано 2<i>n</i> + 1 число (<i>n</i> – натуральное), среди которых одно число равно 0, два числа равны 1, два числа равны 2, ..., два числа равны <i>n</i>. Для каких <i>n</i> эти числа можно записать в одну строку так, чтобы для каждого натурального <i>m</i> от 1 до <i>n</i> между двумя числами, равными <i>m</i>, было расположено ровно <i>m</i> других чисел?
На какое наименьшее количество квадратов можно разрезать лесенку из 15 ступеней (см. рисунок)? Резать можно только по границам клеток. <div align="center"><img src="/storage/problem-media/65152/problem_65152_img_2.gif"></div>
Петя сложил 10 последовательных степеней двойки, начиная с некоторой, а Вася сложил некоторое количество последовательных натуральных чисел, начиная с 1. Могли ли они получить один и тот же результат?
На стороне <i>AB</i> треугольника <i>ABC</i> отметили точки <i>K</i> и <i>L</i> так, что <i>KL = BC</i> и <i>AK = LB</i>.
Докажите, что отрезок <i>KL</i> виден из середины <i>M</i> стороны <i>AC</i> под прямым углом.
Можно ли раскрасить грани куба в три цвета так, чтобы каждый цвет присутствовал, но нельзя было увидеть одновременно грани всех трёх цветов, откуда бы мы ни взглянули на куб? (Одновременно можно увидеть только три любые грани, имеющие общую вершину.)
Петя подсчитал количество всех возможных <i>m</i>-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2<i>m</i>-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)
Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более
а) 2100 ходов;
б) 2000 ходов?
Назовём натуральное число <i>ровным</i>, если в его записи все цифры одинаковы (например: 4, 111, 999999).
Докажите, что любое <i>n</i>-значное число можно представить как сумму не более чем <i>n</i> + 1 ровных чисел.
Внутри прямоугольного треугольника построили две равные окружности так, что первая касается одного из катетов и гипотенузы, вторая касается другого катета и гипотенузы, а ещё эти окружности касаются друг друга. Пусть <i>M</i> и <i>N</i> – точки касания окружностей с гипотенузой. Докажите, что середина отрезка <i>MN</i> лежит на биссектрисе прямого угла треугольника.
На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.
Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?
Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.
Дана квадратная таблица. В каждой её клетке стоит либо плюс, либо минус, причём всего плюсов и минусов поровну.
Докажите, что или в каких-то двух строках, или в каких-то двух столбцах одинаковое количество плюсов.
Даны <i>N</i> прямоугольных треугольников (<i>N</i> > 1). У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что все исходные треугольники подобны.
Даны 15 целых чисел, среди которых нет одинаковых. Петя записал на доску все возможные суммы по 7 из этих чисел, а Вася – все возможные суммы по 8 из этих чисел. Могло ли случиться, что они выписали на доску одни и те же наборы чисел? (Если какое-то число повторяется несколько раз в наборе у Пети, то и у Васи оно должно повторяться столько же раз.)
Даны <i>N</i> прямоугольных треугольников. У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что у всех исходных треугольников одно и то же отношение большего катета к меньшему, если
а) <i>N</i> = 2;
б) <i>N</i> – любое натуральное число, большее 1.