Олимпиадные задачи по математике для 11 класса - сложность 1-3 с решениями

Белая ладья стоит на поле b2 шахматной доски 8×8, а чёрная – на поле c4. Игроки ходят по очереди, каждый – своей ладьей, начинают белые. Запрещается ставить свою ладью под бой другой ладьи, а также на поле, где уже побывала какая-нибудь ладья. Тот, кто не может сделать ход, проигрывает. Кто из игроков может обеспечить себе победу, как бы ни играл другой? (За ход ладья сдвигается по горизонтали или вертикали на любое число клеток, и считается, что она побывала только в начальной и конечной клетках этого хода.)

Дано натуральное число. Разрешается расставить между цифрами числа плюсы произвольным образом и вычислить сумму (например, из числа 123456789 можно получить  12345 + 6 + 789 = 13140).  С полученным числом снова разрешается выполнить подобную операцию, и так далее. Докажите, что из любого числа можно получить однозначное, выполнив не более 10 таких операций.

У барона Мюнхгаузена есть 50 гирь. Веса этих гирь – различные натуральные числа, не превосходящие 100, а суммарный вес гирь – чётное число. Барон утверждает, что нельзя часть этих гирь положить на одну чашу весов, а остальные – на другую чашу так, чтобы весы оказались в равновесии. Могут ли эти слова барона быть правдой?

Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру <i>А</i> передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Фокусник с завязанными глазами выдаёт зрителю 29 карточек с номерами от 1 до 29. Зритель прячет две карточки, а остальные отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Дана прямая и две точки <i>A</i> и <i>B</i>, лежащие по одну сторону от этой прямой на равном расстоянии от неё.

Как с помощью циркуля и линейки найти на прямой такую точку <i>C</i>, что произведение  <i>AC</i>·<i>BC</i>  будет наименьшим?

Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника <i>A</i> было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и <i>коэффициент силы</i> по формуле: сумма очков тех участников, у кого <i>A</i> выиграл, минус сумма очков тех, кому он проиграл.

  а) Могут ли коэффициенты силы всех участников быть больше 0?

  б) Могут ли коэффициенты силы всех участников быть меньше 0?

Существует ли такая бесконечная последовательность, состоящая из

  а) действительных

  б) целых

чисел, что сумма любых десяти подряд идущих чисел положительна, а сумма любых первых подряд идущих  10<i>n</i> + 1  чисел отрицательна при любом натуральном <i>n</i>?

В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.

Хозяин обещает работнику платить в среднем   <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_2.gif">   рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального <i>n</i> выплаченная за первые <i>n</i> дней сумма была натуральным числом, наиболее близким к   <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_3.gif">   Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.

Существует ли такое положительное число $x > 1$, что $${x} > {x^2} > {x^3} > \ldots > {x^{100}}?$$ (Здесь ${x}$ — дробная часть числа $x$, то есть разность между $x$ и ближайшим целым числом, не превосходящим $x$.)

Учитель назвал две различные ненулевые цифры. Коля хочет составить делящееся на $7$ семизначное число, в десятичной записи которого нет других цифр, кроме этих двух. Всегда ли Коля может это сделать, какие бы две цифры ни назвал учитель?

Существует ли число, которое может быть представлено в виде $\frac1n + \frac1m$, где $m$ и $n$ натуральные, не менее чем ста способами? Ответ объясните.

Имеется натуральное 1001-значное число $A$. 1001-значное число $Z$ – то же число $A$, записанное от конца к началу (например, для четырёхзначных чисел это могли быть 7432 и 2347). Известно, что $A > Z$. При каком $A$ частное $A/Z$ будет наименьшим (но строго больше 1)?

Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение $[x^2] + px + q = 0$ при $p \ne 0$ иметь более 100 корней? ($[x^2]$ обозначает наибольшее целое число, не превосходящее $x^2$.)

а) У Тани есть 4 одинаковые с виду гири, массы которых равны 1000, 1002, 1004 и 1005 г (неизвестно, где какая), и чашечные весы (показывающие, какая из двух чаш перевесила или что имеет место равенство). Может ли Таня за 4 взвешивания гарантированно определить, где какая гиря? (Следующее взвешивание выбирается по результатам прошедших.) б) Тот же вопрос, если у весов левая чашка на 1 г легче правой, так что весы показывают равенство, если масса на левой чашке на 1 г больше, чем на правой.

На плоскости даны две параболы:  $y = x^2$  и  $y = x^2 - 1$.  Пусть $U$ – множество всех точек плоскости, лежащих между параболами (включая точки на самих параболах). Существует ли отрезок длины более $10^6$, целиком содержащийся в $U$?

Кусок сыра надо разрезать на части с соблюдением таких правил:

    вначале режем сыр на два куска, затем один из них режем на два куска, затем один из трёх кусков опять режем на два куска, и т.д.;

    после каждого разрезания части могут быть разными по весу, но отношение веса каждой части к весу любой другой должно быть строго больше заданного числа $R$.

  а) Докажите, что при  $R$ = 0,5  можно резать сыр так, что процесс никогда не остановится (после любого числа разрезаний можно будет отрезать ещё один кусок).

  б) Докажите, что если  $R$ > 0,5,  то процесс резки когда-нибудь остановится.

  в) На какое наибольшее число кусков можно разрезать сыр, если  $R$ = 0,6?

Взяли несколько положительных чисел и построили по ним такую последовательность: <i>a</i><sub>1</sub> – сумма исходных чисел, <i>a</i><sub>2</sub> – сумма квадратов исходных чисел, <i>a</i><sub>3</sub> – сумма кубов исходных чисел, и т.д.

  а) Могло ли случиться, что до <i>a</i><sub>5</sub> последовательность убывает  (<i>a</i><sub>1</sub> > <i>a</i><sub>2</sub> > <i>a</i><sub>3</sub> > <i>a</i><sub>4</sub> > <i>a</i><sub>5</sub>),  а начиная с <i>a</i><sub>5</sub> – возрастает  (<i>a</i><sub>5</sub> < <i>a...

На окружности сидят 12 кузнечиков в различных точках. Эти точки делят окружность на 12 дуг. Отметим 12 середин дуг. По сигналу кузнечики одновременно прыгают, каждый – в ближайшую по часовой стрелке отмеченную точку. Снова образуются 12 дуг, прыжки в середины дуг повторяются, и т. д. Может ли хотя бы один кузнечик вернуться в свою исходную точку после того, как им сделано   a) 12 прыжков;   б) 13 прыжков?

Известно, что число <i>a</i> положительно, а неравенство  10 < <i>a<sup>x</sup></i> < 100  имеет ровно пять решений в натуральных числах.

Сколько таких решений может иметь неравенство  100 < <i>a<sup>x</sup></i> < 1000?

Можно ли уместить два точных куба между соседними точными квадратами?

Иными словами, имеет ли решение в целых числах неравенство:  <i>n</i>² < <i>a</i>³ < <i>b</i>³ < (<i>n</i> + 1)²?

Существует ли такой квадратный трёхчлен <i>f</i>(<i>x</i>), что для любого натурального <i>n</i> уравнение  <i>f</i>(<i>f</i>(...<i>f</i>(<i>x</i>))) = 0  (<i>n</i> букв "<i>f</i>") имеет ровно 2<i>n</i> различных действительных корней?

Сумма нескольких положительных чисел равна 10, а сумма квадратов этих чисел больше 20. Докажите, что сумма кубов этих чисел больше 40.

Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые <i>приблизительно равны</i>? Слагаемых может быть одно или несколько. Числа называются <i>приблизительно равными</i>, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка