Олимпиадные задачи по теме «Последовательности» для 9 класса - сложность 3 с решениями

На кольцевом треке 2<i>n</i> велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее <i>n</i>² встреч.

55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира?

Дана функция <i>f</i>(<i>x</i>), значение которой при любом целом <i>x</i> целое. Известно, что для любого простого числа <i>p</i> существует такой многочлен <i>Q<sub>p</sub></i>(<i>x</i>) степени, не превышающей 2013, с целыми коэффициентами, что  <i>f</i>(<i>n</i>) – <i>Q<sub>p</sub></i>(<i>n</i>)  делится на <i>p</i> при любом целом <i>n</i>. Верно ли, что существует такой многочлен <i>g</i>(<i>x</i>) с вещественными коэффициентами , что  <i>g</i>(<i>n</i>) = <i>f</i>(<i>n</i>)  для любого целого <i>n</i>?

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из <i>n</i> человек, команда математических – из <i>m</i>, причём  <i>n</i> ≠ <i>m</i>.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

В бесконечной возрастающей последовательности натуральных чисел каждое делится хотя бы на одно из чисел 1005 и 1006, но ни одно не делится на 97. Кроме того, каждые два соседних числа отличаются не более чем на <i>k</i>. При каком наименьшем <i>k</i> такое возможно?

Для каждого натурального <i>n</i> обозначим через <i>S<sub>n</sub></i> сумму первых <i>n</i> простых чисел:  <i>S</i><sub>1</sub> = 2,  <i>S</i><sub>2</sub> = 2 + 3 = 5,  <i>S</i><sub>3</sub> = 2 + 3 + 5 = 10,  ... .

Могут ли два подряд идущих члена последовательности (<i>S<sub>n</sub></i>) оказаться квадратами натуральных чисел?

Назовём тройку натуральных чисел  (<i>a, b, c</i>)  <i>квадратной</i>, если они образуют арифметическую прогрессию (именно в таком порядке), число <i>b</i> взаимно просто с каждым из чисел <i>a</i> и <i>c</i>, а число <i>abc</i> является точным квадратом. Докажите, что для любой квадратной тройки найдётся другая квадратная тройка, имеющая с ней хотя бы одно общее число. (Тройка  (<i>c, b, a</i>)  новой тройкой не считается.)

Дана такая возрастающая бесконечная последовательность натуральных чисел<i>a</i><sub>1</sub>, ...,<i>a<sub>n</sub></i>, ..., что каждый её член является либо средним арифметическим, либо средним геометрическим двух соседних. Обязательно ли с некоторого момента эта последовательность становится либо арифметической, либо геометрической прогрессией?

Назовём последовательность натуральных чисел <i>интересной</i>, если каждый её член, кроме первого, является либо средним арифметическим, либо средним геометрическим двух соседних с ним членов. Сеня начал последовательность с трёх натуральных чисел, образующих возрастающую геометрическую прогрессию. Он хотел бы продолжить свою последовательность до бесконечной интересной последовательности, которая ни с какого момента не становится ни арифметической, ни геометрической прогрессией.

Может ли оказаться, что этого нельзя сделать?

В бесконечной последовательности  (<i>x<sub>n</sub></i>)  первый член <i>x</i><sub>1</sub> – рациональное число, большее 1, и  <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> + <sup>1</sup>/<sub>[<i>x<sub>n</sub></i>]</sub>  при всех натуральных <i>n</i>.

Докажите, что в этой последовательности есть целое число.

Последовательность(<i>a<sub>n</sub></i>)задана условиями<i> a<sub>1</sub>= </i>1000000,<i> a<sub>n+</sub></i>1<i>=n</i>[<i><img align="absmiddle" src="/storage/problem-media/111805/problem_111805_img_2.gif"></i>]<i>+n </i>. Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.

Бесконечная возрастающая арифметическая прогрессия, состоящая из натуральных чисел, содержит точный куб натурального числа.

Докажите, что она содержит и точный куб, не являющийся точным квадратом.

Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а подготовленная кладётся в её конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите  а) наименьшее такое число,  б) все такие числа.

Пусть  $x_1 \le \dots \le x_n$.  Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.

Существует ли такая бесконечная возрастающая арифметическая прогрессия {<i>a<sub>n</sub></i>} из натуральных чисел, что произведение <i>a<sub>n</sub>...a</i><sub><i>n</i>+9</sub> делится на сумму

<i>a<sub>n</sub> +... + a</i><sub><i>n</i>+9</sub>  при любом натуральном <i>n</i>?

Арифметическая прогрессия <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., состоящая из натуральных чисел, такова, что при любом <i>n</i> произведение <i>a<sub>n</sub>a</i><sub><i>n</i>+31</sub> делится на 2005.

Можно ли утверждать, что все члены прогрессии делятся на 2005?

Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

По данному натуральному числу <i>a</i><sub>0</sub> строится последовательность {<i>a<sub>n</sub></i>} следующим образом   <img align="absmiddle" src="/storage/problem-media/110036/problem_110036_img_2.gif">   если <i>a<sub>n</sub></i> нечётно, и <sup><i>a</i><sub>0</sub></sup>/<sub>2</sub>, если <i>a<sub>n</sub></i> чётно. Докажите, что при любом нечётном  <i>a</i><sub>0</sub> > 5  в последовательности {<i>a<sub>n</sub></i>} встретятся сколь угодно большие числа.

Последовательность<i> a</i>1<i>, a</i>2<i>,..,a</i>2000действительных чисел такова, что для любого натурального<i> n </i>,1<i><img src="/storage/problem-media/110026/problem_110026_img_2.gif"> n<img src="/storage/problem-media/110026/problem_110026_img_2.gif"></i>2000, выполняется равенство <center><i>

a</i>1<i></i>3<i>+a</i>2<i></i>3<i>+..+a<sub>n</sub></i>3<i>=</i>(<i>a</i>1<i>+a</i>2<i>+..+a<sub>n</sub></i>)<i></i>2<i>.

</i></center> Докажите, что все члены этой последовательности – целые числа.

К натуральному числу<i> A </i>приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до<i> A </i>. Найдите<i> A </i>.

В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4,2<i></i>1998. Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?

На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?

Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.

Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены <i>запрещёнными</i>. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

Существует ли такая бесконечная периодическая последовательность, состоящая из букв <i>a</i> и <i>b</i>, что при одновременной замене всех букв <i>a</i> на <i>aba</i> и букв <i>b</i> на <i>bba</i> она переходит в себя (возможно, со сдвигом)?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка