Олимпиадные задачи по теме «Математическая логика» - сложность 2 с решениями
Математическая логика
НазадКарлсон открыл школу, и 1 сентября во всех трёх первых классах было по три урока: Курощение, Низведение и Дуракаваляние. Один и тот же предмет в двух классах одновременно идти не может. Курощение в 1Б было первым уроком. Учитель Дуракаваляния похвалил учеников 1Б: "У вас получается еще лучше, чем у 1А". Низведение на втором уроке было не в 1А. В каком классе валяли дурака на последнем уроке?
В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.
Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".
Саша: "Я – отец Вали. Я – дочь Жени".
Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.
Некоторые жители <i>Острова Разноцветных Лягушек</i> говорят только правду, а остальные всегда лгут. Трое островитян сказали так:
Бре: На нашем острове нет синих лягушек.
Ке: Бре лгун. Он же сам синяя лягушка!
Кекс: Конечно, Бре лгун. Но он красная лягушка.
Водятся ли на этом острове синие лягушки?
Решите ребус: ЛЕТО + ЛЕС = 2011.
13 детей сели за круглый стол и договорились, что мальчики будут врать девочкам, а друг другу говорить правду, а девочки, наоборот, будут врать мальчикам, а друг другу говорить правду. Один из детей сказал своему правому соседу: "Большинство из нас мальчики". Тот сказал своему правому соседу: "Большинство из нас девочки", а он своему соседу справа: "Большинство из нас мальчики", а тот своему: "Большинство из нас девочки" и так далее, пока последний ребёнок не сказал первому: "Большинство из нас мальчики". Сколько мальчиков было за столом?
Вот ребус довольно простой:
ЭХ вчетверо больше, чем ОЙ.
АЙ вчетверо больше, чем ОХ.
Найди сумму всех четырёх.
30 девочек – 13 в красных платьях и 17 в синих платьях – водили хоровод вокруг новогодней ёлки. Впоследствии каждую из них спросили, была ли её соседка справа в синем платье. Оказалось, что правильно ответили те и только те девочки, которые стояли между девочками в платьях одного цвета. Сколько девочек могли ответить утвердительно?
На полянке собрались божьи коровки. Если у божьей коровки на спине шесть точек, то она всегда говорит правду, а если четыре точки – то она всегда лжёт, а других божьих коровок на полянке не было. Первая божья коровка сказала: "У каждой из нас одинаковое количество точек на спине". Вторая сказала: "У всех вместе на спинах 30 точек". – "Нет, у всех вместе 26 точек на спинах", – возразила третья. "Из этих троих ровно одна сказала правду", – заявила каждая из остальных божьих коровок. Сколько всего божьих коровок собралось на полянке?
Про группу из пяти человек известно, что: Алеша на 1 год старше Алексеева,
Боря на 2 года старше Борисова,
Вася на 3 года старше Васильева,
Гриша на 4 года старше Григорьева,
а еще в этой группе есть Дима и Дмитриев.Кто старше и на сколько: Дима или Дмитриев?
Мартышка, Осёл и Козёл затеяли сыграть трио. Уселись чинно в ряд, Мартышка справа. Ударили в смычки, дерут, а толку нет. Поменялись местами, при этом Осёл оказался в центре. А трио всё нейдёт на лад. Пересели ещё раз. При этом оказалось, что каждый из трёх "музыкантов" успел посидеть и слева, и справа, и в центре. Кто где сидел на третий раз?
На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.
Приведите пример таких чисел.
Четверо детей сказали друг о друге так.
<i>Маша</i>: Задачу решили трое: Саша, Наташа и Гриша.
<i>Саша</i>: Задачу не решили трое: Маша, Наташа и Гриша.
<i>Наташа</i>: Маша и Саша солгали.
<i>Гриша</i>: Маша, Саша и Наташа сказали правду.
Сколько детей на самом деле сказали правду?
На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
– Интересно, а сколько среди вас рыцарей? – спросил он.
– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.
– Хорошо. Скажи мне каждый: кто твои соседи? – спросил путешественник.
На этот вопрос все ответили одинаково.
– Данных недостаточно! – сказал путешественник.
– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.
– Да, сегодня день его рождения! – сказал его сосед.
И путешественник смог узнать, сколько за столом рыцарей. Действительно, сколько же их?
В равенстве ТИХО + ТИГР = СПИТ замените одинаковые буквы одинаковыми цифрами, а разные буквы – разными цифрами так, чтобы ТИГР был бы как можно меньше (нулей среди цифр нет).
Вася написал верное утверждение:
"В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".
А Коля написал фразу:
"В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".
Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.
Замените в равенстве ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.
За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"?
Из четырёх цифр, отличных от нуля, составлены два четырёхзначных числа: самое большое и самое маленькое из возможных. Сумма получившихся чисел оказалась равна 11990. Какие числа могли быть составлены?
В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?
Перед футбольным матчем команд "Север" и "Юг" было дано пять прогнозов:
а) ничьей не будет;
б) в ворота "Юга" забьют;
в) "Север" выиграет;
г) "Север" не проиграет;
д) в матче будет забито ровно 3 гола.
После матча выяснилось, что верными оказались ровно три прогноза. С каким счётом закончился матч?
Какие цифры могут стоять на месте букв в примере <i>AB·C = DE</i>, если различными буквами обозначены различные цифры и слева направо цифры записаны в порядке возрастания?
На доске написано:
<i>В этом предложении ... процентов цифр делятся на 2, ... процентов цифр делятся на 3, а ... процентов цифр делятся и на 2 и на 3. </i>
Вставьте вместо многоточий какие-нибудь целые числа так, чтобы написанное на доске утверждение стало верным.
У подводного царя служат осьминоги с шестью, семью или восемью ногами. Те, у кого 7 ног, всегда лгут, а у кого 6 или 8 ног, всегда говорят правду. Встретились четыре осьминога. Синий сказал: "Вместе у нас 28 ног", зеленый: "Вместе у нас 27 ног", желтый: "Вместе у нас 26 ног", красный: "Вместе у нас 25 ног". У кого сколько ног?
Если у осьминога четное число ног, он всегда говорит правду. Если нечетное, то он всегда лжет. Однажды зеленый осьминог сказал темно-синему:
- У меня 8 ног. А у тебя только 6.
- Это у меня 8 ног, - обиделся темно-синий. - А у тебя всего 7.
- У темно-синего действительно 8 ног, - поддержал фиолетовый и похвастался: - А вот у меня целых 9!
- Ни у кого из вас не 8 ног, - вступил в разговор полосатый осьминог. - Только у меня 8 ног! У кого из осьминогов было ровно 8 ног?
В городе живут рыцари и лжецы. Рыцари всегда говорят правду, а лжецы всегда лгут. Рыцари носят с собой шпагу, а лжецы– нет. Собрались вместе два рыцаря и два лжеца и посмотрели друг на друга. Кто из них мог сказать фразу:
-
"Cреди нас все рыцари".
-
"Среди вас есть ровно один рыцарь".
-
"Среди вас есть ровно два рыцаря" ?
Для каждой фразы укажите всех, кто мог ее сказать, и объясните.