Олимпиадные задачи из источника «глава 11. Последовательности и ряды» - сложность 2 с решениями
глава 11. Последовательности и ряды
НазадПусть <i>f<sub>k,l</sub></i>(<i>x</i>) – производящая функция последовательности <i>P<sub>k,l</sub></i>(<i>n</i>) из задачи <a href="https://mirolimp.ru/tasks/161525">161525</a>: <i>f<sub>k,l</sub></i>(<i>x</i>) = <i>P<sub>k,l</sub></i>(0) + <i>xP<sub>k,l</sub></i>(1) + ... + <i>x<sup>kl</sup>P<sub>k,l</sub></i>(<i>kl</i>). а) Докажите равенства: <i>f<sub>k,l</sub></i>(<i>x</i>) = <i>f</i><sub><i>k</i>–1,<i>l</i></sub>(<i>x</i>) + <i>x<sup>k</sup>f...
Обозначим через <i>P<sub>k,l</sub></i>(<i>n</i>) количество разбиений числа <i>n</i> на не более чем <i>k</i> слагаемых, каждое из которых не превосходит <i>l</i>.
Докажите равенства:
а) <i>P<sub>k,l</sub></i>(<i>n</i>) – <i>P</i><sub><i>k,l</i>–1</sub>(<i>n</i>) = <i>P</i><sub><i>k</i>–1,<i>l</i></sub>(<i>n – l</i>);
б) <i>P<sub>k,l</sub></i>(<i>n</i>) – <i>P</i><sub><i>k</i>–1,<i>l</i></sub>(<i>n</i>) = <i>P</i><sub><i>k,l</i>–1</sub&...
Найдите сумму <i>S<sub>l</sub></i>(<i>x</i>) = <i>g</i><sub>0,<i>l</i></sub>(<i>x</i>) – <i>g</i><sub>1,<i>l</i>–1</sub>(<i>x</i>) + <i>g</i><sub>2,<i>l</i>–2</sub>(<i>x</i>) – ... + (–1)<i><sup>l</sup>g</i><sub><i>l</i>,0</sub>(<i>x</i>).
Определение многочленов Гаусса <i>g<sub>k,l</sub></i>(<i>x</i>) можно найти в <a href="https://problems.ru/thes.php?letter=12#gaussa">справочнике</a>.
а) Определение (смотри в <a href="https://problems.ru/thes.php?letter=12#gaussa">справочнике</a>) функций <i>g<sub>k,l</sub></i>(<i>x</i>) не позволяет вычислять их значения при <i>x</i> = 1. Но, поскольку функции <i>g<sub>k,l</sub></i>(<i>x</i>) являются многочленами, они определены и при <i>x</i> = 1. Докажите равенство <img align="absmiddle" src="/storage/problem-media/61523/problem_61523_img_2.gif"> б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи <a href="https://mirolimp.ru/tasks/161522">161522</a> подставить значение <i>x</i> = 1?
Переменные<i>x</i>и<i>y</i>связаны равенством<div align="CENTER"> <i>x</i> = <i>y</i> + <i>y</i><sup>2</sup> + <i>y</i><sup>3</sup> +...+ <i>y</i><sup>n</sup> +... </div>Разложите<i>y</i>по степеням<i>x</i>.
Каков знак<i>n</i>-го члена в разложении произведения<div align="CENTER"> (1 - <i>a</i>)(1 - <i>b</i>)(1 - <i>c</i>)(1 - <i>d</i> )...= 1 - <i>a</i> - <i>b</i> + <i>ab</i> - <i>c</i> + <i>ac</i> + <i>bc</i> - <i>abc</i> - <i>d</i> +... </div>(<i>n</i>= 0, 1, 2,...)?
Определите коэффициент<i>a</i><sub>n</sub>в разложении<div align="CENTER"> (1 + <i>qx</i>)(1 + <i>qx</i><sup>2</sup>)(1 + <i>qx</i><sup>4</sup>)(1 + <i>qx</i><sup>8</sup>)(1 + <i>qx</i><sup>16</sup>)...= <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub><i>x</i> + <i>a</i><sub>2</sub><i>x</i><sup>2</sup> + <i>a</i><sub>3</sub><i>x</i><sup>3</sup> +... </div>
Обозначим через <i>d</i>(<i>n</i>) количество разбиений числа <i>n</i> на различные слагаемые, а через <i>l</i>(<i>n</i>) – на нечётные. Докажите равенства: а) <i>d</i>(0) + <i>d</i>(1)<i>x</i> + <i>d</i>(2)<i>x</i>² + ... = (1 + <i>x</i>)(1 + <i>x</i>²)(1 + <i>x</i>³)...; б) <i>l</i>(0) + <i>l</i>(1)<i>x</i> + <i>l</i>(2)<i>x</i>² + ... = (1 – <i>x</i>)<sup>–1</sup>(1 – <i>x</i>³)<sup>–1</sup>(1 – <i>x</i><sup>5</sup>)<sup>–1</sup>...; в) <i>d</i>(<i>n</i>)...
Докажите, что каждое натуральное число <i>n</i> может быть 2<sup><i>n</i>–1</sup> – 1 различными способами представлено в виде суммы <i>меньших</i> натуральных слагаемых, если два представления, отличающихся хотя бы порядком слагаемых, считать различными.
Пусть <i>p</i>(<i>n</i>) – количество разбиений числа <i>n</i> (определение разбиений смотри <a href="https://problems.ru/thes.php?letter=16#Razbienia">здесь</a>). Докажите равенства:
<div align="center"><i>p</i>(0) + <i>p</i>(1)<i>x</i> + <i>p</i>(2)<i>x</i> '' + ... = (1 + <i>x</i> + <i>x</i>² + ...)...(1 + <i>x<sup>k</sup></i> + <i>x</i><sup>2<i>k</i></sup> + ...)... = (1 – <i>x</i>)<sup>–1</sup>(1 – <i>x</i>²)<sup>–1</sup>(1 – <i>x</i>³)<sup>–1</sup>... </div> (По определению сч...
Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:
<div align="center"><img src="/storage/problem-media/61507/problem_61507_img_2.gif"></div>Определения многочленов Чебышева можно найти в<a href="https://problems.ru/thes.php?letter=12#chebysheva">справочнике</a>.
Назовем<i>экспонентой</i>следующий степенной ряд:
Exp(<i>z</i>)=1+<i>z</i>+<i>z</i><sup>2</sup>/2!+...+<i>z</i><sup>n</sup>/n!+... Докажите следующие свойства экспоненты: а)Exp$\nolimits{^\prime}$(<i>z</i>) = Exp$\nolimits$(<i>z</i>); б)Exp$\nolimits$(($\alpha$+$\beta$)<i>z</i>) = Exp$\nolimits$($\alpha$<i>z</i>)<sup> . </sup>Exp$\nolimits$($\beta$<i>z</i>).
Вычислите производящие функции следующих последовательностей:
а) <img align="absmiddle" src="/storage/problem-media/61497/problem_61497_img_2.gif"> б) <img align="absmiddle" src="/storage/problem-media/61497/problem_61497_img_3.gif">
Докажите тождество:<div align="CENTER"> <table> <tr valign="MIDDLE"><td align="CENTER">(1 + <i>x</i> + <i>x</i><sup>2</sup> +...+ <i>x</i><sup>9</sup>)(1 + <i>x</i><sup>10</sup> + <i>x</i><sup>20</sup> +...+ <i>x</i><sup>90</sup>)×</td> </tr> <tr valign="MIDDLE"><td align="CENTER">×(1 + <i>x</i><sup>100</sup> + <i>x</i><sup>200</sup> +...+ <i>x</i><sup>900</sup>)...= $\displaystyle {\dfrac{1}{1-x}}$.</td> </tr> </table> </div>
Вычислите производящие функции следующих последовательностей: <table> <tr><td align="LEFT">а) <i>a</i><sub>n</sub> = <i>n</i>; б) <i>a</i><sub>n</sub> = <i>n</i><sup>2</sup>; в) <i>a</i><sub>n</sub> = <i>C</i><sub>m</sub><sup>n</sup>.</td> </tr> </table>
Пусть<i>F</i>(<i>x</i>) — производящая функция последовательности {<i>a</i><sub>n</sub>}. Докажите равенство$\left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right.$<i>a</i><sub>n</sub>=${\dfrac{F^{(n)}(x)}{n!}}$$\left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right\vert _{x=0}^{}$.
Вычислите: а) (1 +<i>x</i>)<sup>-1</sup>; б) (1 -<i>x</i>)<sup>-1</sup>; в) (1 -<i>x</i>)<sup>-2</sup>.
<b>Обращение степенного ряда.</b>Докажите, что если<i>a</i><sub>0</sub>$\ne$0, то для ряда<i>F</i>(<i>x</i>) существует ряд<i>F</i><sup>-1</sup>(<i>x</i>) =<i>b</i><sub>0</sub>+<i>b</i><sub>1</sub><i>x</i>+...+<i>b</i><sub>n</sub><i>x</i><sup>n</sup>+... такой, что<i>F</i>(<i>x</i>)<i>F</i><sup>-1</sup>(<i>x</i>) = 1.
Найдите произведения следующих формальных степенных рядов: <table> <tr><td align="LEFT">а) (1 + <i>x</i> + <i>x</i><sup>2</sup> + <i>x</i><sup>3</sup> +...)(1 - <i>x</i> + <i>x</i><sup>2</sup> - <i>x</i><sup>3</sup> +...);</td> </tr> <tr><td align="LEFT">б) (1 + <i>x</i> + <i>x</i><sup>2</sup> + <i>x</i><sup>3</sup> +...)<sup>2</sup>;</td> </tr> <tr><td align="LEFT"> в) $\left(\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right.$1 + <i>x</i> + ${\dfrac{x^2}{2!}}$ +...+ ${\dfrac{x^...
Пусть характеристическое уравнение (<a href="https://problems.ru/view_problem_details_new.php?id=">11.3</a>) последовательности (<a href="https://problems.ru/view_problem_details_new.php?id=">11.2</a>) имеет комплексные корни<i>x</i><sub>1, 2</sub>=<i>a</i>±<i>ib</i>=<i>re</i><sup>±i$\scriptstyle \varphi$</sup>. Докажите, что для некоторой пары чисел<i>c</i><sub>1</sub>,<i>c</i><sub>2</sub>будет выполняться равенство<div align="CENTER"> <i>a</i><sub>n</sub> = <i>r</i><sup>n</sup>(<i>c</i><sub>1</sub>cos <i>n</i>$\displaystyle \var...
Найдите у чисел а) (6 + <img width="33" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61477/problem_61477_img_2.gif">)<sup>1999</sup>; б) (6 + <img width="33" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61477/problem_61477_img_3.gif">)<sup>1999</sup>; в) (6 + <img width="33" height="36" align="MIDDLE" border="0" src="/storage/problem-media/61477/problem_61477_img_3.gif">)<sup>2000</sup> первые 1000 знаков после запятой.
Докажите, что для любого числа<i>p</i>> 2 найдется такое число$\beta$, что<div align="CENTER"> $\displaystyle \underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+ \sqrt{2+p}}}}}{n~\mbox{\scriptsize {радикалов}}}^{},$ = $\displaystyle \beta^{2^n}{}$ - $\displaystyle \beta^{-2^n}_{}$. </div>
Лягушка прыгает по вершинам треугольника <i>ABC</i>, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из <i>A</i> в <i>A</i> за <i>n</i> прыжков?
Докажите, что произвольная последовательность<i>Q</i><sub>n</sub>, заданная условиями<div align="CENTER"> <i>Q</i><sub>0</sub> = $\displaystyle \alpha$, <i>Q</i><sub>1</sub> = $\displaystyle \beta$, <i>Q</i><sub>n + 2</sub> = <i>Q</i><sub>n + 1</sub> + <i>Q</i><sub>n</sub> (<i>n</i> $\displaystyle \geqslant$ 0), </div>может быть выражена через числа Фибоначчи<i>F</i><sub>n</sub>и числа Люка<i>L</i><sub>n</sub>(определение чисел Люка смотри в задаче<a href="https://mirolimp.ru/tasks/160585">3.133</a>).
Докажите, что уравнение (<i>x + y</i><img width="25" height="38" align="MIDDLE" border="0" src="/storage/problem-media/61465/problem_61465_img_2.gif">)<sup>4</sup> + (<i>z + t</i><img width="25" height="38" align="MIDDLE" border="0" src="/storage/problem-media/61465/problem_61465_img_2.gif">)<sup>4</sup> = 2 + <img width="25" height="38" align="MIDDLE" border="0" src="/storage/problem-media/61465/problem_61465_img_2.gif"> не имеет решений в рациональных числах.