Олимпиадные задачи из источника «Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки» для 9 класса - сложность 1-2 с решениями

Найдите наименьшее натуральное значение <i>n</i>, при котором число <i>n</i>! делится на 990.

На прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он прыгает через какого-нибудь кузнечика (но не через двух сразу).

Докажите, что через 1985 секунд они не могут вернуться в исходное положение.

Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.

Могут ли они вращаться?

Докажите, что выпуклый 13-угольник нельзя разрезать на параллелограммы.

Найти остаток от деления на 7 числа  10<sup>10</sup> + 10<sup>10<sup>2</sup></sup> + 10<sup>10<sup>3</sup></sup> + ... + 10<sup>10<sup>10</sup></sup>.

Докажите, что если   <i>a</i><sub>1</sub> ≥ <i>a</i><sub>2</sub> ≥ ... ≥ <i>a<sub>n</sub></i>,   <i>b</i><sub>1</sub> ≥ <i>b</i><sub>2</sub> ≥ ... ≥ <i>b<sub>n</sub></i>,   то наибольшая из сумм вида   <i>a</i><sub>1</sub><i>b</i><sub><i>k</i><sub>1</sub></sub> + <i>a</i><sub>2</sub><i>b</i><sub><i>k</i><sub>2</sub></sub> + ... + <i>a<sub>n</sub>b<sub>k<sub>n</sub></sub></i>     (<i>k</i><sub>1</sub>, <i>k</i><sub>2&lt...

Докажите неравенство   (<i>a + b + c + d</i> + 1)² ≥ 4(<i>a</i>² + <i>b</i>² + <i>c</i>² + <i>d</i>²)  при  <i>a, b, c, d</i> ∈ [0, 1].

Пусть <i>n</i> – натуральное число, не кратное 17. Докажите, что либо  <i>n</i><sup>8</sup> + 1,  либо  <i>n</i><sup>8</sup> – 1  делится на 17.

Докажите, что если число  <i>n</i>! + 1  делится на  <i>n</i> + 1,  то  <i>n</i> + 1  – простое число.

Докажите тождества:   а)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_2.gif">   б)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_3.gif">   в)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_4.gif">   г)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_5.gif">   д)  <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_6.gif">(Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что   <img align="absmiddle" src="/storage/problem-media/60413/problem_60413_img_7.gif">   – это количест...

Сколько диагоналей имеет выпуклый:

а) 10-угольник;   б) <i>k</i>-угольник  (<i>k</i> > 3)?

  а) Каких чисел больше среди целых чисел первой тысячи (включая и 1000): в записи которых есть единица, или остальных?   б) Каких семизначных чисел больше: тех, в записи которых есть единица, или остальных?

В народной дружине 100 человек. Каждый вечер на дежурство выходят трое.

Можно ли организовать дежурство так, чтобы через некоторое время оказалось, что каждый дежурил с каждым ровно один раз?

<i>x</i> ≥ –1, <i>n</i> – натуральное число. Докажите, что   (1 + <i>x</i>)<sup><i>n</i></sup> ≥ 1 + <i>nx</i>.

<i>n</i> – натуральное число. Докажите, что   <img align="MIDDLE" src="/storage/problem-media/30898/problem_30898_img_2.gif">

<i>n</i> – натуральное число. Докажите, что   <img width="318" height="52" align="MIDDLE" border="0" src="/storage/problem-media/30897/problem_30897_img_2.gif">

<i>a, b, c</i> ≥ 0.  Докажите, что  2(<i>a</i>³ + <i>b</i>³ + <i>c</i>³) ≥ <i>a</i>²<i>b + ab</i>² + <i>a</i>²<i>c + ac</i>² + <i>b</i>²<i>c + bc</i>².

<i>x, y</i> > 0.  Докажите, что   <img align="absMIDDLE" src="/storage/problem-media/30888/problem_30888_img_2.gif">

Докажите, что   <img align="MIDDLE" src="/storage/problem-media/30887/problem_30887_img_2.gif">   при любых <i>x</i> и <i>y</i>.

<i>k, l, m</i> – натуральные числа. Докажите, что  2<sup><i>k+l</i></sup> + 2<sup><i>k+m</i></sup> + 2<sup><i>l+m</i></sup> ≤ 2<sup><i>k+l+m</i>+1</sup> + 1.

Докажите неравенство   ¼ <i>a</i>² + <i>b</i>² + <i>c</i>² ≥ <i>ab – ac</i> + 2<i>bc</i>  при любых <i>a, b, c</i>.

<i>a + b</i> = 1.  Каково максимальное значение величины <i>ab</i>?

Докажите, что при  <i>x</i> ≥ 0  имеет место неравенство   3<i>x</i>³ – 6<i>x</i>² + 4 ≥ 0.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка