Олимпиадные задачи из источника «1971 год» для 10 класса - сложность 3 с решениями

В колбе находится колония из<i>n</i>бактерий. В какой-то момент внутрь колбы попадает вирус. В первую минуту вирус уничтожает одну бактерию, и сразу же после этого и вирус, и оставшиеся бактерии делятся пополам. Во вторую минуту новые два вируса уничтожают две бактерии, а затем и вирусы, и оставшиеся бактерии снова делятся пополам, и т.д. Наступит ли такой момент времени, когда не останется ни одной бактерии?

В клетки таблицы <i>m×n</i> вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

Собралось <i>n</i> человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.

В некотором множестве введена<nobr>операция <font face="Symbol"></font>,</nobr>которая по каждым двум элементам<i>a</i><nobr>и <i>b</i></nobr>этого множества вычисляет некоторый элемент<i>a</i><font face="Symbol"></font><i>b</i>этого множества. Известно, что:<nobr>1°. Для любых трех элементов <i>a</i>, <i>b</i> и <i>c</i></nobr> <nobr>          <i>a</i><font face="Symbol"></font>(<i>b</i><font face="Symbol"></font><i>c</i>) = <i>b</i><font face="Symbol">*</font>(<i>c</i><font face="Symbo...

По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел <i>a, b, c, d</i> произведение чисел  <i>a – d</i>  и  <i>b – c</i>  отрицательно, то числа <i>b</i> и <i>c</i> можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.

Для любого натурального числа <i>n</i> существует составленное из цифр 1 и 2 число, делящееся на 2<sup><i>n</i></sup>. Докажите это.

(Например, на 2 делится 2, на 4 делится 12, на 8 делится 112, на 16 делится 2112...)

Исследуйте, сколько решений имеет система уравнений

    <i>x</i>² + <i>y</i>² + <i>xy = a</i>,

    <i>x</i>² – <i>y</i>² = <i>b</i>,

где <i>а</i> и <i>b</i> – некоторые данные действительные числа.

Про пять положительных чисел известно, что если из суммы любых трёх из них вычесть сумму двух оставшихся, то разность будет положительной. Докажите, что произведение всех десяти таких разностей не превосходит квадрата произведения данных пяти чисел.

Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.

Докажите это.

Если<nobr><i>x</i><sub>1</sub> < <i>x</i><sub>2</sub> < <i>x</i><sub>3</sub> < ... < <i>x</i><sub><i>n</i></sub> —</nobr>натуральные числа, то сумма<nobr><i>n</i> – 1</nobr>дробей,<nobr><i>k</i>-я из</nobr>которых, где<nobr><i>k</i> < <i>n</i>,</nobr>равна отношению квадратного корня из разности<nobr><i>x</i><sub><i>k</i>+1</sub> - <i>x</i><sub><i>k</i></sub></nobr>к числу<i>x</i><sub><i>k</i>+1</sub>, меньше суммы чисел 1,<sup>1</sup>/<sub&g...

Пусть <i>p</i> – произвольное вещественное число. Найдите все такие <i>x</i>, что сумма кубических корней из чисел  1 – <i>x</i>  и  1 + <i>x</i>  равна <i>p</i>.

Число 76 обладает таким любопытным свойством: последние две цифры числа  76² = 5776  – это снова 76.

  а) Есть ли ещё такие двузначные числа?

  б) Найдите все такие трёхзначные числа <i>A</i>, что последние три цифры числа <i>A</i>² составляют число <i>А</i>.

  в) Существует ли такая бесконечная последовательность цифр <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., что для любого натурального <i>n</i> квадрат числа <span style="text-decoration: overline;"><i>a<sub>n</sub>a</i><sub><i>n</i>–1</sub>...<i>a</i><sub>2</sub><i>a</i><sub>1&lt...

а) Докажите, что любая прямая, делящая пополам площадь и периметр треугольника, проходит через центр вписанной окружности.

б) Докажите аналогичное утверждение для любого описанного многоугольника.

Три окружности радиуса <i>R</i>проходят через точку <i>H</i>; <i>A</i>,<i>B</i>и <i>C</i> — точки их попарного пересечения, отличные от <i>H</i>. Докажите, что: а) <i>H</i> — точка пересечения высот треугольника <i>ABC</i>; б) радиус описанной окружности треугольника <i>ABC</i>тоже равен <i>R</i>.

Внутри квадрата <!-- MATH $A_{1}A_{2}A_{3}A_{4}$ --> <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub> взята точка <i>P</i>. Из вершины <i>A</i><sub>1</sub> опущен перпендикуляр на <i>A</i><sub>2</sub><i>P</i>, из <i>A</i><sub>2</sub> — перпендикуляр на <i>A</i><sub>3</sub><i>P</i>, из <i>A</i><sub>3</sub> — на <i>A</i><sub>4</sub><i>P</i>, из <i>A</i><sub>4</sub> — на <i>A</i><sub>1</sub><i>P</i>. Докажите...

Две стороны треугольника равны 10 и 15. Докажите, что биссектриса угла между ними не больше 12.

В вершинах правильного 12-угольника расставлены числа 1 и –1 так, что во всех вершинах, кроме одной, стоят единицы. Разрешается изменять знак в любых <i>k</i> подряд идущих вершинах. Можно ли такими операциями добиться того, чтобы единственное число –1 сдвинулось в соседнюю с исходной вершину, если   а)  <i>k</i> = 3;   б)  <i>k</i> = 4;   в)  <i>k</i> = 6.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка