Олимпиадные задачи из источника «2003 год» - сложность 3-4 с решениями

Дан вписанный четырёхугольник <i>ABCD</i>. Точки <i>P</i> и <i>Q</i> симметричны точке <i>C</i> относительно прямых <i>AB</i> и <i>AD</i> соответственно.

Докажите, что прямая <i> PQ </i> проходит через ортоцентр <i>H</i> треугольника <i>ABD</i>.

В окружность вписан прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>. Пусть <i>K</i> – середина дуги <i>BC</i>, не содержащей точку <i>A, N</i> – середина отрезка <i>AC, M</i> – точка пересечения луча <i>KN</i> с окружностью. В точках <i>A</i> и <i>C</i> проведены касательные к окружности, которые пересекаются в точке <i>E</i>. Докажите, что

∠<i>EMK</i> = 90°.

Пусть<i> M </i>– точка пересечения медиан треугольника<i> ABC </i>. На перпендикулярах, опущенных из<i> M </i>на стороны<i> BC </i>,<i> AC </i>и<i> AB </i>, взяты точки<i> A</i>1,<i> B</i>1и<i> C</i>1соответственно, причём<i> A</i>1<i>B</i>1<i> <img src="/storage/problem-media/108095/problem_108095_img_2.gif"> MC </i>и<i> A</i>1<i>C</i>1<i> <img src="/storage/problem-media/108095/problem_108095_img_2.gif"> MB </i>. Докажите, что точка<i> M </i>является точкой пересечения медиан и в треугольнике<i> A</i>1<i>B</i>1<i>C</i>1.

Дано равенство  (<i>a</i><sup><i>m</i><sub>1</sub></sup> – 1)...(<i>a</i><sup><i>m</i><sub><i>n</i></sub></sup> – 1) = (<i>a</i><sup><i>k</i><sub>1</sub></sup> + 1)...(<i>a</i><sup><i>k</i><sub><i>l</i></sub></sup> + 1),  где <i>a, n, l</i> и все показатели степени – натуральные числа, причём  <i>a</i> > 1.

Найдите все возможные значения числа <i>a</i>.

На берегу круглого острова Гдетотам расположено 20 деревень, в каждой живёт по 20 борцов. Был проведён турнир, в котором каждый борец встретился со всеми борцами из всех других деревень. Деревня <i>А</i> считается сильнее деревни <i>Б</i>, если хотя бы <i>k</i> поединков между борцами из этих деревень заканчивается победой борца из деревни <i>А</i>. Выяснилось, что каждая деревня сильнее следующей за ней по часовой стрелке. Какое наибольшее значение может иметь <i>k</i>? (У всех борцов разная сила, и в поединке всегда побеждает сильнейший.)

По периметру круглого торта диаметром <i>n</i>/<font face="Symbol">p</font> метров расположены <i>n</i> вишенок. Если на концах некоторой дуги находятся вишенки, то количество остальных вишенок на этой дуге меньше, чем длина дуги в метрах. Докажите, что торт можно разрезать на <i>n</i> равных секторов так, что в каждом куске будет по вишенке.

Дан многочлен <i>P</i>(<i>x</i>) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...,  такая, что  <i>P</i>(<i>a</i><sub>1</sub>) = 0,  <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>,  <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub>  и т. д. Докажите, что не все числа в последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...  различны.

Дана бесконечная последовательность многочленов <i>P</i><sub>1</sub>(<i>x</i>), <i>P</i><sub>2</sub>(<i>x</i>), ... . Всегда ли существует конечный набор функций  <i>f</i><sub>1</sub>(<i>x</i>),  <i>f</i><sub>2</sub>(<i>x</i>), ...,  <i>f</i><sub><i>N</i></sub>(<i>x</i>), композициями которых можно записать любой из них (например,  <i>P</i><sub>1</sub>(<i>x</i>) =  <i>f</i><sub>2</sub>(<i>f</i><sub>1</sub>(<i>f</i><sub>2</sub>(<i>x</i>))))?

В стране несколько городов, соединённых дорогами с односторонним и двусторонним движением. Известно, что из каждого города в любой другой можно проехать ровно одним путём, не проходящим два раза через один и тот же город. Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога не соединяла два города из одной губернии.

Пусть <i>P</i>(<i>x</i>) – многочлен со старшим коэффициентом 1, а последовательность целых чисел  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ...  такова, что  <i>P</i>(<i>a</i><sub>1</sub>)= 0,  <i>P</i>(<i>a</i><sub>2</sub>) = <i>a</i><sub>1</sub>,  <i>P</i>(<i>a</i><sub>3</sub>) = <i>a</i><sub>2</sub>  и т. д. Числа в последовательности не повторяются. Какую степень может иметь <i>P</i>(<i>x</i>)?

В тюрьму поместили 100 узников. Надзиратель сказал им: "Я дам вам вечер поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Иногда я буду одного из вас отводить в комнату, в которой есть лампа (вначале она выключена). Уходя из комнаты, вы можете оставить лампу как включенной, так и выключенной. Если в какой-то момент кто-то из вас скажет мне, что вы все уже побывали в комнате, и будет прав, то я всех вас выпущу на свободу. А если неправ - скормлю всех крокодилам. И не волнуйтесь, что кого-нибудь забудут - если будете молчать, то все побываете в комнате, и ни для кого никакое посещение комнаты не станет последним." Придумайте стратегию, гарантирующую узникам освобождение.

Есть шоколадка в форме равностороннего треугольника со стороной <i>n</i>, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого <i>n</i> выясните, кто из играющих может всегда выигрывать, как бы не играл противник?

Боря задумал целое число, большее 100. Кира называет целое число, большее 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия?

В стране 15 городов, некоторые из них соединены авиалиниями, принадлежащими трём авиакомпаниям. Известно, что даже если любая из авиакомпаний прекратит полеты, можно будет добраться из каждого города в любой другой (возможно, с пересадками), пользуясь рейсами оставшихся двух компаний. Какое наименьшее количество авиалиний может быть в стране?

В треугольнике <i>ABC</i> на сторонах <i>AC</i> и <i>BC</i> взяты такие точки <i>X</i> и <i>Y</i>, что  ∠<i>ABX</i> = ∠<i>YAC</i>,  ∠<i>AYB</i> = ∠<i>BXC</i>,  <i>XC = YB</i>.  Найдите углы треугольника <i>ABC</i>.

Можно ли покрасить некоторые клетки доски 8×8 так, чтобы в любом квадрате 3×3 было ровно 5 закрашенных клеток, а в каждом прямоугольнике 2×4 (вертикальном или горизонтальном) – ровно 4 закрашенные клетки?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка