Олимпиадные задачи из источника «Московская математическая олимпиада» для 10-11 класса - сложность 5 с решениями
Московская математическая олимпиада
НазадСреди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_2.gif"> </i>, б) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_3.gif"> </i>, в) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_4.gif"> </i>?
Игрок на компьютере управляет лисой, охотящейся за двумя зайцами. В вершине<i> A </i>квадрата<i> ABCD </i>находится нора: если в нее, в отсутствие лисы, попадает хотя бы один заяц, то игра проиграна. Лиса ловит зайца, как только оказывается с ним в одной точке (возможно, в точке<i> A </i>). Вначале лиса сидит в точке<i> C </i>, а зайцы – в точках<i> B </i>и<i> D </i>. Лиса бегает повсюду со скоростью не больше<i> v </i>, а зайцы – по лучам<i> AB </i>и<i> AD </i>со скоростью не больше 1. При каких значениях<i> v </i>лиса сможет поймать обоих зайцев?
Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника:
а) через 3 шага с точностью до 0,3;
б) через 2007 шагов с точностью до 0,003?
Муха летает внутри правильного тетраэдра с ребром <i>a</i>. Какое наименьшее расстояние она должна пролететь, чтобы побывать на каждой грани и вернуться в исходную точку?
Существует ли такой многогранник и точка вне него, что из этой точки не видно ни одной из его вершин?
Из выпуклого многогранника с 9 вершинами, одна из которых<i>A</i>, параллельными переносами, переводящими<i>A</i>в каждую из остальных вершин, образуется 8 равных ему многогранников. Докажите, что хотя бы два из этих 8 многогранников пересекаются (по внутренним точкам).
Вдоль стены круглой башни по часовой стрелке ходят два стражника, причём первый из них — вдвое быстрее второго. В этой стене, имеющей длину 1, проделаны бойницы. Система бойниц называется надёжной, если в каждый момент времени хотя бы один из стражников находится возле бойницы. а) Какую наименьшую длину может иметь бойница, если система, состоящая только из этой бойницы, надежна? б) Докажите, что суммарная длина бойниц любой надёжной системы больше 1/2. в) Докажите, что для любого числа <i>s</i>>1/2 существует надёжная система бойниц с суммарной длиной, меньшей <i>s</i>.
Для заданных натуральных чисел <i>k<sub>0</sub></i><<i>k<sub>1</sub></i><<i>k<sub>2</sub></i> выясните, какое наименьшее число корней на промежутке <nobr>[0; 2π)</nobr> может иметь уравнение вида sin<i>(k<sub>0</sub>x</i>)+<i>A<sub>1</sub></i>·sin(<i>k<sub>1</sub>x</i>) +<i>A<sub>2</sub></i>·sin(<i>k<sub>2</sub>x</i>)=0где<i>A<sub>1</sub></i>,<i>A<sub>2</sub></i>– вещественные числа.
Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?
У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?
На химической конференции присутствовало<i>k</i>учёных химиков и алхимиков, причём химиков было больше, чем алхимиков. Известно, что на любой вопрос химики всегда отвечают правду, а алхимики иногда говорят правду, а иногда лгут. Оказавшийся на конференции математик про каждого учёного хочет установить, химик тот или алхимик. Для этого он любому учёному может задать вопрос: ``Кем является такой-то: химиком или алхимиком?'' (В частности, может спросить, кем является сам этот учёный.) Доказать, что математик может установить это за: а) 4<i>k</i>вопросов; б) 2<i>k</i>- 2 вопросов.
Прямоугольный лист бумаги размером<i>a</i>×<i>b</i>см разрезан на прямоугольные полоски, каждая из которых имеет сторону 1 см. Линии разрезов параллельны сторонам исходного листа. Доказать, что хотя бы одно из чисел<i>a</i>или<i>b</i>целое.
Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.
Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21.
В бесконечно большой каравай, занимающий все пространство, в точках с целыми координатами впечены изюминки диаметра 0,1. Каравай разрезали на части несколькими плоскостями. Доказать, что найдется неразрезанная изюминка.
Проекции плоского выпуклого многоугольника на ось<i>OX</i>, биссектрису 1-го и 3-го координатных углов, ось<i>OY</i>и биссектрису 2-го и 4-го координатных углов соответственно равны 4, 3$\sqrt{2}$, 5, 4$\sqrt{2}$. Площадь многоугольника равна<i>S</i>. Доказать, что<i>S</i>$\ge$10.
Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.
Поместить в куб окружность наибольшего возможного радиуса.
В треугольной пирамиде все 4 грани имеют одинаковую площадь. Докажите, что они равны.
Некоторое количество точек расположено на плоскости так, что каждые 3 из них можно заключить в круг радиуса<i>r</i>= 1. Доказать, что тогда и все точки можно заключить в круг радиуса 1.
Доказать, что из шести попарно различных по величине квадратов нельзя сложить прямоугольник.
На какое самое большее число частей можно разбить пространство пятью сферами?
В пространстве расположен правильный додекаэдр. Сколькими способами можно провести плоскость так, чтобы она высекла на додекаэдре правильный шестиугольник?
В пространстве расположены 3 плоскости и шар. Сколькими различными способами можно поместить в пространстве второй шар так, чтобы он касался трёх данных плоскостей и первого шара? (<i>В этой задаче речь фактически идёт о касании сфер, т.е. не предполагается, что шары могут касаться только внешним образом — прим. ред.</i>)
На острове живут хамелеоны пяти цветов. Когда один хамелеон кусает другого, цвет укушенного хамелеона меняется по некоторому правилу, причём новый цвет зависит только от цвета укусившего и цвета укушенного. Известно, что $2023$ красных хамелеона могут договориться о последовательности укусов, после которой все они станут синими. При каком наименьшем $k$ можно гарантировать, что $k$ красных хамелеонов смогут договориться так, чтобы стать синими? Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)