Олимпиадные задачи из источника «1997-1998» для 11 класса
1997-1998
НазадНожки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?
Имеется квадрат клетчатой бумаги размером 102×102 клетки и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.
Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ да надо заплатить 2 рубля, за ответ нет – 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?
Куб со стороной<i> n </i>(<i> n<img src="/storage/problem-media/109948/problem_109948_img_2.gif"></i>3) разбит перегородками на единичные кубики. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?
Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)
Пусть<i> f</i>(<i>x</i>)<i>=x<sup>2</sup>+ax+b cos x </i>. Найдите все значения параметров<i> a </i>и<i> b </i>, при которых уравнения<i> f</i>(<i>x</i>)<i>=</i>0и<i> f</i>(<i>f</i>(<i>x</i>))<i>=</i>0имеют совпадающие непустые множества действительных корней.
В последовательности натуральных чисел {<i>a<sub>n</sub></i>}, <i>n</i> = 1, 2, ..., каждое натуральное число встречается хотя бы один раз, и для любых различных <i>n</i> и <i>m</i> выполнено неравенство <img align="absmiddle" src="/storage/problem-media/109941/problem_109941_img_2.gif"> Докажите, что тогда |<i>a<sub>n</sub> – n</i>| < 2000000 для всех натуральных <i>n</i>.
Даны два правильных тетраэдра с ребрами длины<i> <img src="/storage/problem-media/109940/problem_109940_img_2.gif"> </i>, переводящихся один в другой при центральной симметрии. Пусть<i> ϕ </i>– множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры<i> ϕ </i>.
Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть<i> A </i>– количество черных отрезков на периметре,<i> B </i>– количество белых, и пусть многоугольник состоит из<i> a </i>черных и<i> b </i>белых клеток. Докажите, что<i> A-B=</i>4(<i>a-b</i>).
Имеется таблица <i>n×n</i>, в <i>n</i> – 1 клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны?
На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?
Назовём <i>лабиринтом</i> шахматную доску 8×8, на которой между некоторыми полями поставлены перегородки. По команде <b>ВПРАВО</b> ладья смещается на одно поле вправо или, если справа находится край доски или перегородка, остаётся на месте; аналогично выполняются команды <b>ВЛЕВО, ВВЕРХ</b> и <b>ВНИЗ</b>. Программист пишет программу – конечную последовательность указанных команд, и даёт её пользователю, после чего пользователь выбирает лабиринт и помещает в него ладью на любое поле. Верно ли, что программист может написать такую программу, что ладья обойдёт все доступные поля в лабиринте при любом выборе пользователя?
В каждую клетку квадратной таблицы размера (2<sup><i>n</i></sup> – 1)×(2<sup><i>n</i></sup> – 1) ставится одно из чисел 1 или – 1. Расстановку чисел назовём <i>удачной</i>, если каждое число равно произведению всех соседних с ним (соседними считаются числа, стоящие в клетках с общей стороной). Найдите число удачных расстановок.
Дан выпуклый<i> n </i>-угольник (<i> n></i>3), никакие четыре вершины которого не лежат на одной окружности. Окружность, проходящую через три вершины многоугольника и содержащую внутри себя остальные его вершины, назовем описанной. Описанную окружность назовем граничной, если она проходит через три последовательные (соседние) вершины многоугольника; описанную окружность назовем внутренней, если она проходит через три вершины, никакие две из которых не являются соседними вершинами многоугольника. Докажите, что граничных описанных окружностей на две больше, чем внутренних.
С числом разрешается проводить одно из двух действий: возводить в квадрат или прибавлять единицу. Даны числа19и98. Можно ли из них за одно и то же количество действий получить равные числа?
Часть подмножеств некоторого конечного множества выделена. Каждое выделенное подмножество состоит в точности из2<i>k </i>элементов (<i> k </i>– фиксированное натуральное число). Известно, что в каждом подмножестве, состоящем не более чем из(<i>k+</i>1)<i><sup>2</sup> </i>элементов, либо не содержится ни одного выделенного подмножества, либо все в нем содержащиеся выделенные подмножества имеют общий элемент. Докажите, что все выделенные подмножества имеют общий элемент.
Проведем через основание биссектрисы угла<i> A </i>разностороннего треугольника<i> ABC </i>отличную от стороны<i> BC </i>касательную к вписанной в треугольник окружности. Точку ее касания с окружностью обозначим через<i> K<sub>a</sub> </i>. Аналогично построим точки<i> K<sub>b</sub> </i>и<i> K<sub>c</sub> </i>. Докажите, что три прямые, соединяющие точки<i> K<sub>a</sub> </i>,<i> K<sub>b</sub> </i>и<i> K<sub>c</sub> </i>с серединами сторон<i> BC </i>,<i> CA </i>и<i> AB </i>соответственно, имеют общую точку, причем эта точка лежит на вписанной окружности.
Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше1, расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем1<i>/<img src="/storage/problem-media/109669/problem_109669_img_2.gif"> </i>. Докажите, что многоугольники не имеют общих внутренних точек.
Прямые, параллельные оси <i>Ox</i>, пересекают график функции <i>y = ax</i>³ + <i>bx</i>² + <i>cx + d</i>: первая – в точках <i>A, D</i> и <i>E</i>, вторая – в точках <i>B, C</i> и <i>F</i> (см. рис.). Докажите, что длина проекции дуги <i>CD</i> на ось <i>Ox</i> равна сумме длин проекций дуг <i>AB</i> и <i>EF</i>. <div align="center"><img src="/storage/problem-media/109668/problem_109668_img_2.gif"></div>
Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника <i>m×n</i> числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.
В тетраэдр<i> ABCD </i>, длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.
Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?
Внутри параболы <i>y = x</i>² расположены несовпадающие окружности ω<sub>1</sub>, ω<sub>2</sub>, ω<sub>3</sub>, ... так, что при каждом <i>n</i> > 1 окружность ω<sub><i>n</i></sub> касается ветвей параболы и внешним образом окружности ω<sub><i>n</i>–1</sub> (см. рис.). Найдите радиус окружности σ<sub>1998</sub>, если известно, что диаметр ω<sub>1</sub> равен 1 и она касается параболы в её вершине. <div align="center"><img src="/storage/problem-media/109664/problem_109664_img_2.gif"></div>
В стране <i>N</i> 1998 городов, и из каждого осуществляются беспосадочные перелеты в три других города (все авиарейсы двусторонние). Известно, что из каждого города, сделав несколько пересадок, можно долететь до любого другого. Министерство Безопасности хочет объявить закрытыми 200 городов, никакие два из которых не соединены авиалинией. Докажите, что это можно сделать так, чтобы можно было долететь из каждого незакрытого города в любой другой, не делая пересадок в закрытых городах.
На плоскости нарисовано некоторое семейство<i> S </i>правильных треугольников, получающихся друг из друга параллельными переносами, причем любые два треугольника пересекаются. Докажите, что найдутся три точки такие, что любой треугольник семейства<i> S </i>содержит хотя бы одну из них.