Олимпиадные задачи по математике для 5-10 класса - сложность 3-5 с решениями
На столе лежит куча из более чем <i>n</i>² камней. Петя и Вася по очереди берут камни из кучи, первым берёт Петя. За один ход можно брать любое простое число камней, меньшее <i>n</i>, либо любое кратное <i>n</i> число камней, либо один камень. Докажите, что Петя может действовать так, чтобы взять последний камень независимо от действий Васи.
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?
На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?
В некоторых клетках доски 10<i>× </i>10поставили<i> k </i> ладей, и затем отметили все клетки, которые бьет хотя бы одна ладья (считается, что ладья бьет клетку, на которой стоит). При каком наибольшем <i> k </i>может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?
Даны натуральные числа <i>x</i> и <i>y</i> из отрезка [2, 100]. Докажите, что при некотором натуральном <i>n</i> число <i>x</i><sup>2<i><sup>n</sup></i></sup> + <i>y</i><sup>2<i><sup>n</sup></i></sup> – составное.
В некоторых клетках доски 10×10 поставили <i>k</i> ладей, и затем отметили все клетки, которые бьёт хотя бы одна ладья (ладья бьёт и клетку, на которой стоит). При каком наибольшем <i>k</i> может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?
Вписанная окружность касается сторон <i>AB</i> и <i>AC</i> треугольника <i>ABC</i> в точках <i>X</i> и <i>Y</i> соответственно. Точка <i>K</i>– середина дуги <i>AB</i> описанной окружности треугольника <i>ABC</i> (не содержащей точки <i>C</i>). Оказалось, что прямая <i>XY</i> делит отрезок <i>AK</i> пополам. Чему может быть равен угол <i>BAC</i>?
Приведённые квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) таковы, что уравнения <i>f</i>(<i>g</i>(<i>x</i>)) = 0 и <i>g</i>(<i>f</i>(<i>x</i>)) = 0 не имеют вещественных корней.
Докажите, что хотя бы одно из уравнений <i>f</i>(<i>f</i>(<i>x</i>)) = 0 и <i>g</i>(<i>g</i>(<i>x</i>)) = 0 тоже не имеет вещественных корней.
Две окружности<i> σ<sub>1</sub> </i>и<i> σ<sub>2</sub> </i>пересекаются в точках<i> A </i>и<i> B </i>. Пусть<i> PQ </i>и<i> RS </i>– отрезки общих внешних касательных к этим окружностям (точки<i> P </i>и<i> R </i>лежат на<i> σ<sub>1</sub> </i>, точки<i> Q </i>и<i> S </i>– на<i> σ<sub>2</sub> </i>). Оказалось, что<i> RB|| PQ </i>. Луч<i> RB </i>вторично пересекает<i> σ<sub>2</sub> </i>в точке<i> W </i>. Найдите отношение<i> RB/BW </i>.
300 бюрократов разбиты на три комиссии по 100 человек. Каждые два бюрократа либо знакомы друг с другом, либо незнакомы. Докажите, что найдутся два таких бюрократа из разных комиссий, что в третьей комиссии есть либо 17 человек, знакомых с обоими, либо 17 человек, незнакомых с обоими.
Дано натуральное число <i>n</i> > 1. Для каждого делителя <i>d</i> числа <i>n</i> + 1, Петя разделил число <i>n</i> на <i>d</i> с остатком и записал на доску неполное частное, а в тетрадь – остаток. Докажите, что наборы чисел на доске и в тетради совпадают.
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
Медианы<i> AA' </i>и<i> BB' </i>треугольника<i> ABC </i>пересекаются в точке<i> M </i>, причем<i> <img src="/storage/problem-media/110762/problem_110762_img_2.gif"> AMB=</i>120<i><sup>o</sup> </i>. Докажите, что углы<i> AB'M </i>и<i> BA'M </i>не могут быть оба острыми или оба тупыми.
Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.
Докажите, что эти три числа имеют общий делитель, больший единицы.
Даны натуральные числа<i> p<k<n </i>. На бесконечной клетчатой плоскости отмечены некоторые клетки так, что в любом прямоугольнике (<i>k+</i>1)×<i>n </i>(<i> n </i>клеток по горизонтали,<i> k+</i>1– по вертикали) отмечено ровно<i> p </i>клеток. Докажите, что существует прямоугольник<i> k</i>×(<i>n+</i>1) (где<i> n+</i>1клетка по горизонтали,<i> k </i>– по вертикали), в котором отмечено не менее<i> p+</i>1клетки.
Дана треугольная пирамида<i> ABCD </i>. Сфера<i> S<sub>1</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> C </i>, пересекает ребра<i> AD </i>,<i> BD </i>,<i> CD </i>в точках<i> K </i>,<i> L </i>,<i> M </i>соответственно; сфера<i> S<sub>2</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> D </i>, пересекает ребра<i> AC </i>,<i> BC </i>,<i> DC </i>в точках<i> P </i>,<i> Q </i>,<i> M </i>соответственно. Оказалось, что<i> KL|| PQ </i>. Докажите, что биссектрисы плоских углов<i> KMQ <...
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.
Какое наибольшее число людей могло остаться в конце?
На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?
На прямой имеется2<i>n+</i>1отрезок. Любой отрезок пересекается по крайней мере с<i> n </i>другими. Докажите, что существует отрезок, пересекающийся со всеми остальными.
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более <i>N</i> различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на <i>N</i> + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
Все клетки клетчатой плоскости окрашены в 5 цветов так, что в любой фигуре вида<center> <img src="/storage/problem-media/110013/problem_110013_img_2.gif"> </center>все цвета различны. Докажите, что и в любой фигуре вида<center> <img src="/storage/problem-media/110013/problem_110013_img_3.gif"> </center>все цвета различны.
Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.
Докажите, что найдётся пара отмеченных чисел, одно из которых делится на другое.
В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.
Дан квадратный трёхчлен <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>. Уравнение <i>f</i>(<i>f</i>(<i>x</i>)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что <i>b</i> ≤ – ¼.