Олимпиадные задачи из источника «Московская математическая олимпиада» для 11 класса - сложность 3-4 с решениями
Московская математическая олимпиада
НазадОбозначим через <i>S</i>(<i>n</i>, <i>k</i>) количество не делящихся на <i>k</i> коэффициентов разложения многочлена (<i>x</i> + 1)<i><sup>n</sup></i> по степеням <i>x</i>.
а) Найдите <i>S</i>(2012, 3).
б) Докажите, что <i>S</i>(2012<sup>2011</sup>, 2011) делится на 2012.
После обеда на <i>прозрачной</i> квадратной скатерти остались тёмные пятна общей площади <i>S</i>. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна <i>S</i><sub>1</sub>. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна <i>S</i>. Какое наименьшее значение может принимать величина <i>S</i><sub>1</sub> : <i>S</i>?
Учитель написал на доске в алфавитном порядке все возможные 2<i><sup>n</sup></i> слов, состоящих из <i>n</i> букв А или Б. Затем он заменил каждое слово на произведение <i>n</i> множителей, исправив каждую букву А на <i>x</i>, а каждую букву Б – на (1 – <i>x</i>), и сложил между собой несколько первых из этих многочленов от <i>x</i>. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке [0, 1] функцию от <i>x</i>.
Про бесконечный набор прямоугольников известно, что в нём для любого числа <i>S</i> найдутся прямоугольники суммарной площади больше <i>S</i>.
а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?
б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.
Для <i>n</i> = 1, 2, 3 будем называть числом <i>n</i>-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (<i>n</i> + 2), (<i>n</i> + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
На собрание пришло <i>n</i> человек (<i>n</i> > 1). Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
б) Покажите, что <i>n</i> может быть больше 4.
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.). <div align="center"><img src="/storage/problem-media/116574/problem_116574_img_2.gif"></div>Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?
а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?
А если богатырей
б) десять?
в) тридцать три?
Дано натуральное число. Разрешается расставить между цифрами числа плюсы произвольным образом и вычислить сумму (например, из числа 123456789 можно получить 12345 + 6 + 789 = 13140). С полученным числом снова разрешается выполнить подобную операцию, и так далее. Докажите, что из любого числа можно получить однозначное, выполнив не более 10 таких операций.
Сравните числа <img align="absmiddle" src="/storage/problem-media/116374/problem_116374_img_2.gif">
Пусть <i>I</i> – центр вписанной окружности неравнобедренного треугольника <i>ABC</i>. Через <i>A</i><sub>1</sub> обозначим середину дуги <i>BC</i> описанной окружности треугольника <i>ABC</i>, не содержащей точки <i>A</i>, а через <i>A</i><sub>2</sub> – середину дуги <i>BAC</i>. Перпендикуляр, опущенный из точки <i>A</i><sub>1</sub> на прямую <i>A</i><sub>2</sub><i>I</i>, пересекает прямую <i>BC</i> в точке <i>A'</i>. Аналогично определяются точки <i>B'</i> и <i>C'</i>.
а) Докажите, что точки <i>A'</i>, <i>B'</i>...
По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.
При какой перестановке <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>2011</sub> чисел 1, 2, ..., 2011 значение выражения <div align="center"><img src="/storage/problem-media/116235/problem_116235_img_2.png"></div>будет наибольшим?
Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении <i>a</i> : (1 – <i>a</i>) по весу, где 0 < <i>a</i> < 1. Верно ли, что на любом промежутке длины 0,001 из интервала (0, 1) найдётся значение <i>a</i>, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов?
Рассматриваются ортогональные проекции данного правильного тетраэдра с единичным ребром на всевозможные плоскости. Какое наибольшее значение может принимать радиус круга, содержащегося в такой проекции?
В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма <i>k</i> наибольших чисел равна <i>a</i>, а в каждом столбце таблицы сумма <i>k</i> наибольших чисел равна <i>b</i>.
а) Докажите, что если <i>k</i> = 2, то <i>a = b</i>.
б) В случае <i>k</i> = 3 приведите пример такой таблицы, для которой <i>a ≠ b</i>.
Команда из <i>n</i> школьников участвует в игре: на каждого из них надевают шапку одного из <i>k</i> заранее известных цветов, а затем по свистку все школьники одновременно выбирают себе по одному шарфу. Команда получает столько очков, у скольких её участников цвет шапки совпал с цветом шарфа (шарфов и шапок любого цвета имеется достаточное количество; во время игры каждый участник не видит своей шапки, зато видит шапки всех остальных, но не имеет права выдавать до свистка никакую информацию). Какое наибольшее число очков команда, заранее наметив план действий каждого её члена, может гарантированно получить:
а) при <i>n = k = </i>2;
б) при произвольных фиксированных <i>n</i> и <i>k</i>?
Функция <i>f</i> каждому вектору <i><b>v</b></i> (с общим началом в точке <i>O</i>) пространства ставит в соответствие число <i>f</i>(<i><b>v</b></i>), причём для любых векторов <i><b>u</b>, <b>v</b></i> и любых чисел α, β значение <i>f</i>(α<i><b>u</b></i> + β<i><b>v</b></i>) не превосходит хотя бы одного из чисел <i>f</i>(<i><b>u</b></i>) или <i>f</i>(<i><b>v</b></i>). Какое наибольшее количество значений может принимать такая функция?
Докажите, что если числа <i>x, y, z</i> при некоторых значениях <i>p</i> и <i>q</i> являются решениями системы
<i>y = x<sup>n</sup> + px + q, z = y<sup>n</sup> + py + q, x = z<sup>n</sup> + pz + q</i>,
то выполнено неравенство <i>x</i>²<i>y + y</i>²<i>z + z</i>²<i>x ≥ x</i>²<i>z + y</i>²<i>x + z</i>²<i>y</i>.
Рассмотрите случаи а) <i>n</i> = 2; б) <i>n</i> = 2010.
На плоскости отметили 4<i>n</i> точек, после чего соединили отрезками все пары точек, расстояние между которыми равно 1 см. Оказалось, что среди любых <i>n</i> + 1 точек обязательно есть две, соединённые отрезком. Докажите, что всего проведено не менее 7<i>n</i> отрезков.
Можно ли, применяя к числу 2 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в любом количестве и в любом порядке, получить число 2010?
В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет. <div align="center"><img src="/storage/problem-media/115497/problem_115497_img_2.gif"> </div>
Докажите, что при любом разбиении ста "двузначных" чисел 00, 01, ..., 99 на две группы некоторые числа хотя бы одной группы можно записать в ряд так, чтобы каждые два соседних числа этого ряда отличались друг от друга на 1, 10 или 11, и хотя бы в одном из двух разрядов (единиц или десятков) встречались все 10 различных цифр.
Для каждого простого <i>p</i> найдите наибольшую натуральную степень числа <i>p</i>!, на которую делится число (<i>p</i>²)!.