Олимпиадные задачи из источника «2003-2004» для 2-10 класса - сложность 1-3 с решениями
2003-2004
НазадМожно ли во всех точках плоскости с целыми координатами записать натуральные числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?
Набор пятизначных чисел ${N_1, \dots, N_k}$ таков, что любое пятизначное число, все цифры которого идут в возрастающем порядке, совпадает хотя бы в одном разряде хотя бы с одним из чисел $N_1, \dots, N_k$. Найдите наименьшее возможное значение $k$.
Может ли в наборе из шести чисел (<i>a, b, c</i>, <sup><i>a</i>²</sup>/<sub><i>b</i></sub>, <sup><i>b</i>²</sup>/<sub><i>c</i></sub>, <sup><i>c</i>²</sup>/<sub><i>a</i></sub>}, где <i>a, b, c</i> – положительные числа, оказаться ровно три различных числа?
В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?
В остроугольном треугольнике расстояние от середины каждой стороны до противоположной вершины равно сумме расстояний от неё до сторон треугольника. Докажите, что этот треугольник – равносторонний.
Имеется набор гирь со следующими свойствами:<ol type="a"> <li>В нем есть 5 гирь, попарно различных по весу.
</li><li>Для любых двух гирь найдутся две другие гири того же суммарного веса. </li></ol>Какое наименьшее число гирь может быть в этом наборе?
По двум пересекающимся дорогам с равными постоянными скоростями движутся автомобили "Ауди" и БМВ. Оказалось, что как в 17.00, так и в 18.00 БМВ находился в два раза дальше от перекрёстка, чем "Ауди". В какое время "Ауди" мог проехать перекрёсток?
Положительные числа <i>x, y, z</i> таковы, что модуль разности любых двух из них меньше 2.
Докажите, что  <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_2.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_3.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_4.gif"> > <i>x + y + z</i>.
В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?
Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.
Докажите, что эти три числа имеют общий делитель, больший единицы.
Набор пятизначных чисел<i> {N<sub>1</sub> </i>,<i> N<sub>k</sub>} </i>таков, что любое пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в одном разряде хотя бы с одним их чисел<i> N<sub>1</sub> </i>,<i> N<sub>k</sub> </i>. Найдите наименьшее возможное значение<i> k </i>.
Уравнение <i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i> = 0 с целыми ненулевыми коэффициентами имеет <i>n</i> различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа <i>a</i><sub><i>n</i>–1</sub> и <i>a<sub>n</sub></i> взаимно просты.
Сумма положительных чисел <i>a, b, c</i> равна <sup>π</sup>/<sub>2</sub>. Докажите, что cos <i>a</i> + cos <i>b</i> + cos <i>c</i> > sin <i>a</i> + sin <i>b</i> + sin <i>c</i>.
Пусть многочлен <i>P</i>(<i>x</i>) = <i>a<sub>n</sub>x<sup>n</sup> + a</i><sub><i>n</i>–1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub>0</sub> имеет хотя бы один действительный корень и <i>a</i><sub>0</sub> ≠ 0. Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи <i>P</i>(<i>x</i>), можно получить из него число <i>a</i><sub>0</sub> так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.
В языке жителей Банановой Республики количество слов превышает количество букв в их алфавите. Докажите, что найдется такое натуральное<i> k </i>, для которого можно выбрать<i> k </i>различных слов, в записи которых используется ровно<i> k </i>различных букв.
Пусть <i>O</i> – центр описанной окружности остроугольного треугольника <i>ABC, T</i> – центр описанной окружности треугольника <i>AOC, M</i> – середина <i>AC</i>. На сторонах <i>AB</i> и <i>BC</i> выбраны точки <i>D</i> и <i>E</i> соответственно так, что ∠<i>BDM</i> = ∠<i>BEM</i> = ∠<i>B</i>. Докажите, что <i>BT</i> ⊥ <i>DE</i>.
Существуют ли такие попарно различные натуральные числа <i>m, n, p, q</i>, что <i>m + n = p + q</i> и <img align="absmiddle" src="/storage/problem-media/109812/problem_109812_img_2.gif">
Даны натуральное число <i>n</i> > 3 и положительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, произведение которых равно 1.
Докажите неравенство <img align="middle" src="/storage/problem-media/109811/problem_109811_img_2.gif">
На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики?
Четырехугольник<i> ABCD </i>описан около окружности. Биссектрисы внешних углов<i> A </i>и<i> B </i>пересекаются в точке<i> K </i>, внешних углов<i> B </i>и<i> C </i>– в точке<i> L </i>, внешних углов<i> C </i>и<i> D </i>– в точке<i> M </i>, внешних углов<i> D </i>и<i> A </i>– в точке<i> N </i>. Пусть<i> K<sub>1</sub> </i>,<i> L<sub>1</sub> </i>,<i> M<sub>1</sub> </i>,<i> N<sub>1</sub> </i>– точки пересечения высот треугольников<i> ABK </i>,<i> BCL </i>,<i> CDM </i>,<i> DAN </i>соответственно. До...
Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.
Последовательность неотрицательных рациональных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... удовлетворяет соотношению <i>a<sub>m</sub> + a<sub>n</sub> = a<sub>mn</sub></i> при любых натуральных <i>m, n</i>.
Докажите, что не все её члены различны.
На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков – белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какую-нибудь коробочку, в которой лежит белый шарик?
Пусть <i>I<sub>A</sub></i> и <i>I<sub>B</sub></i> – центры вневписанных окружностей, касающихся сторон <i>BC</i> и <i>CA</i> треугольника <i>ABC</i> соответственно, а <i>P</i> – точка на описанной окружности Ω этого треугольника. Докажите, что середина отрезка, соединяющего центры описанных окружностей треугольников <i>I<sub>A</sub>CP</i> и <i>I<sub>B</sub>CP</i>, совпадает с центром окружности Ω.
Три окружности ω<sub>1</sub>, ω<sub>2</sub> и ω<sub>3</sub> радиуса <i>r</i> проходят через точку <i>S</i> и касаются внутренним образом окружности ω радиуса <i>R</i> (<i>R > r</i>) в точках <i>T</i><sub>1</sub>, <i>T</i><sub>2</sub> и <i>T</i><sub>3</sub> соответственно. Докажите, что прямая <i>T</i><sub>1</sub><i>T</i><sub>2</sub> проходит через вторую (отличную от <i>S</i>) точку пересечения окружностей ω<sub>1</sub> и ω<sub>2</sub>.