Олимпиадные задачи по математике для 10 класса - сложность 1-2 с решениями

Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:

   а) равные многоугольники;

   б) правильные многоугольники?

Имеются 100 камней разного веса (одинаковых нет), к каждому приклеена этикетка с указанием его веса. Хулиган Гриша хочет переклеить этикетки так, чтобы общий вес любого набора с числом камней от 1 до 99 отличался от суммы весов, указанных на этикетках из этого набора. Всегда ли он может это сделать?

Известно, что  0 < <i>a, b, c, d</i> < 1  и  <i>abcd</i> = (1 – <i>a</i>)(1 – <i>b</i>)(1 – <i>c</i>)(1 – <i>d</i>).  Докажите, что   (<i>a + b + c + d</i>) – (<i>a + c</i>)(<i>b + d</i>) ≥ 1.

Имеется многоугольник. Для каждой стороны поделим её длину на сумму длин всех остальных сторон. Затем сложим все получившиеся дроби. Докажите, что полученная сумма меньше 2.

Еще Архимед знал, что шар занимает ровно<i> <img align="absmiddle" src="/storage/problem-media/115708/problem_115708_img_2.gif"> </i>объема цилиндра, в который он вписан (шар касается стенок, дна и крышки цилиндра). В цилиндрической упаковке находятся 5 стоящих друг на друге шаров. Найдите отношение пустого места к занятому в этой упаковке.

<center><i> <img align="absmiddle" src="/storage/problem-media/115708/problem_115708_img_3.gif"> </i></center>

Существует ли арифметическая прогрессия из пяти различных натуральных чисел, произведение которых есть точная 2008-я степень натурального числа?

В окружность радиуса 2 вписан тридцатиугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>30</sub>. Докажите, что на дугах <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, ..., <i>A</i><sub>30</sub><i>A</i><sub>1</sub> можно отметить по одной точке (<i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>, ..., <i>B</i><sub>30</sub> соответственно) так, чтобы площадь шестидесятиугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub&gt...

На бумажке записаны три положительных числа <i>x, y</i> и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке

 a) число <i>x</i>²?   б) число <i>xy</i>?

На бумаге "в клеточку" нарисован выпуклый многоугольник <i>M</i>, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри <i>M</i>, равна сумме длин горизонтальных отрезков линий сетки внутри <i>M</i>.

Дана треугольная пирамида <i>ABCD</i>. В ней <i>R</i> – радиус описанной сферы, <i>r</i> – радиус вписанной сферы, <i>a</i> – длина наибольшего ребра, <i>h</i> – длина наименьшей высоты (на какую-то грань). Докажите, что  <sup><i>R</i></sup>/<i><sub>r</sub> > <sup>a</sup></i>/<sub><i>h</i></sub>.

Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например,  1001! + 2,  1001! + 3, ...,   1001! + 1001).

А существуют ли 1000 последовательных натуральных чисел, среди которых ровно пять простых чисел?

Десятичная запись натурального числа <i>a</i> состоит из <i>n</i> цифр, а десятичная запись числа <i>a</i>³ состоит из <i>m</i> цифр. Может ли  <i>m + n</i>  равняться 2001?

Шесть игральных костей нанизали на спицу так, что каждая может вращаться независимо от остальных (протыкаем через центры противоположных граней). Спицу положили на стол и прочитали число, образованное цифрами на верхних гранях костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7. (На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.)

а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится? б) Тот же вопрос для четырёхзначных чисел.

Центр круга – точка с декартовыми координатами  (<i>a, b</i>).  Известно, что начало координат лежит внутри круга. Обозначим через <i>S</i><sup>+</sup> общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через <i>S</i><sup>–</sup> – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину  <i>S</i><sup>+</sup> – <i>S</i><sup>–</sup>.

Дано:

<img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_2.gif">

Докажите, что   <img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_3.gif">

Числа 2<sup>1989</sup> и 5<sup>1989</sup> выписали одно за другим (в десятичной записи). Сколько всего цифр выписано?

В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.

Может ли сумма получившихся 14 чисел оказаться равной 0?

Через вершины <i>A</i> и <i>B</i> треугольника <i>ABC</i> проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.

Рассматривается последовательность  1, ½, &frac13;, ¼, &frac15;, &frac16;, <sup>1</sup>/<sub>7</sub>, ...  Существует ли арифметическая прогрессия

  а) длины 5;

  б) сколь угодно большой длины,

составленная из членов этой последовательности?

Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$.

Известно, что если у правильного $N$-угольника, находящегося внутри окружности, продлить все стороны до пересечения с этой окружностью, то $2N$ добавленных к сторонам отрезков можно разбить на две группы с одинаковой суммой длин. А верно ли аналогичное утверждение для находящегося внутри сферы

а) произвольного куба;

б) произвольного правильного тетраэдра?

(Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.) <img src="/storage/problem-media/66641/problem_66641_img_2.png" width="400">

Имеется железная гиря в 6 кг, сахар и невесомые пакеты в неограниченном количестве, а также нестандартные весы с двумя чашами: весы находятся в равновесии, если грузы на левой и правой чашах относятся как  3 : 4.  За одно взвешивание можно положить на весы любые уже имеющиеся грузы и добавить на одну из чаш пакет с таким количеством сахара, чтобы чаши уравновесились (такие пакеты с сахаром можно использовать при дальнейших взвешиваниях). Удастся ли отмерить 1 кг сахара?

a) Написаны 2007 натуральных чисел, больших 1. Докажите, что удастся зачеркнуть одно число так, чтобы произведение оставшихся можно было представить в виде разности квадратов двух натуральных чисел. б) Написаны 2007 натуральных чисел, больших 1, одно из которых равно 2006. Оказалось, что есть только одно такое число среди написанных, что произведение оставшихся представляется в виде разности квадратов двух натуральных чисел. Докажите, что это число – 2006.

Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника

  a) число вершин;

  б) число рёбер.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка