Олимпиадные задачи по теме «Теория чисел. Делимость» для 8 класса

Найдите все такие натуральные <i>k</i>, что при каждом нечётном  <i>n</i> > 100  число  20<sup><i>n</i></sup> + 13<sup><i>n</i></sup>  делится на <i>k</i>.

Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?

Натуральные числа <i>a, b</i> и <i>c</i>, где <i>c</i> ≥ 2, таковы, что  <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> = <sup>1</sup>/<sub><i>c</i></sub>.  Докажите, что хотя бы одно из чисел  <i>a + c,  b + c</i> – составное.

Даны натуральные числа <i>M</i> и <i>N</i>, большие десяти, состоящие из одинакового количества цифр и такие, что  <i>M</i> = 3<i>N</i>.  Чтобы получить число <i>M</i>, надо в числе <i>N</i> к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число <i>N</i>?

Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?

На какую наибольшую степень тройки делится произведение 3·33·333·...·3333333333 ?

Известно, что числа <i>а, b, c</i> и <i>d</i> – целые и  <img align="absmiddle" src="/storage/problem-media/116922/problem_116922_img_2.gif">.  Может ли выполняться равенство  <i>аbcd</i> = 2012?

При каких  <i>n</i> > 3  правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

В формулу линейной функции  <i>y = kx + b</i>  вместо букв <i>k</i> и <i>b</i> впишите числа от 1 до 20 (каждое по одному разу) так, чтобы получилось 10 функций, графики которых проходят через одну и ту же точку.

Под ёлкой лежат 2012 шишек. Винни-Пух и ослик Иа-Иа играют в игру: по очереди берут себе шишки. Своим ходом Винни-Пух берёт одну или четыре шишки, а Иа-Иа – одну или три. Первым ходит Пух. Проигравшим считается тот, у кого нет хода. Кто из игроков сможет гарантированно победить, как бы ни играл соперник?

В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов.

Докажите, что чётно и число плюсов в 11 клетках главной диагонали квадрата.

Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв.

В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.

На какую наибольшую степень двойки может делиться такое число?

Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>. (Например,  <i>C</i>(10) = 2,  <i>C</i>(11) = 1,  <i>C</i>(12) = 2.)

Конечно или бесконечно число таких пар натуральных чисел  (<i>a, b</i>),  что  <i>a ≠ b</i>  и  <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?

Может ли число  (<i>x</i>² + <i>x</i> + 1)² + (<i>y</i>² + <i>y</i> + 1)²  при каких-то целых <i>x</i> и <i>y</i> оказаться точным квадратом?

Может ли произведение трёх трёхзначных чисел, для записи которых использовано девять различных цифр, оканчиваться четырьмя нулями?

Натуральные числа <i>а, b, c</i> и <i>d</i> таковы, что  <i>ab = cd</i>.  Может ли число  <i>a + b + c + d</i>  оказаться простым?

В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?

Является ли простым число  2011·2111 + 2500?

Существуют ли два одночлена, произведение которых равно –12<i>а</i><sup>4</sup><i>b</i>², а сумма является одночленом с коэффициентом 1?

У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?

Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?

Рациональные числа <i>x, y</i> и <i>z</i> таковы, что все числа  <i>x + y</i>² + <i>z</i>²,  <i>x</i>² + <i>y</i> + <i>z</i>²  и  <i>x</i>² + <i>y</i>² + <i>z</i>  целые. Докажите, что число 2<i>x</i> целое.

На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.

Приведите пример таких чисел.

Назовём натуральные числа <i>a</i> и <i>b</i> <i>друзьями</i>, если их произведение является точным квадратом. Докажите, что если <i>a</i> – друг <i>b</i>, то <i>a</i> – друг НОД(<i>a, b</i>).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка