Олимпиадные задачи из источника «35 турнир (2013/2014 год)» - сложность 2 с решениями

Незнайка хвастается, что написал в ряд несколько единиц, поставил между каждыми соседними единицами знак "+" или "&times", расставил скобки и получил выражение, значение которого равно 2014; более того, если в этом выражении заменить одновременно все знаки "+" на знаки "&times", а знаки "&times" на знаки "+", все равно получится 2014. Может ли он быть прав?

На клетчатой доске 5×5 Петя отмечает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки неперекрывающимися и не вылезающими за границу квадрата уголками из трёх клеток (уголки разрешается класть только "по клеточкам"). Какое наименьшее число клеток должен отметить Петя, чтобы Вася не смог выиграть?

Дед Мороз раздал детям 47 шоколадок так, что каждая девочка получила на одну шоколадку больше, чем каждый мальчик. Затем дед Мороз раздал тем же детям 74 мармеладки так, что каждый мальчик получил на одну мармеладку больше, чем каждая девочка. Сколько всего было детей?

Дан выпуклый четырёхугольник <i>ABCD</i>. Пешеход Петя выходит из вершины <i>A</i>, идёт по стороне <i>AB</i> и далее по контуру четырёхугольника. Пешеход Вася выходит из вершины <i>A</i> одновременно с Петей, идёт по диагонали <i>AC</i> и одновременно с Петей приходит в <i>C</i>. Пешеход Толя выходит из вершины <i>B</i> в тот момент, когда её проходит Петя, идёт по диагонали <i>BD</i> и одновременно с Петей приходит в <i>D</i>. Скорости пешеходов постоянны.

Могли ли Вася и Толя прийти в точку пересечения диагоналей <i>O</i> одновременно?

Натуральные числа <i>a, b, c, d</i> попарно взаимно просты и удовлетворяют равенству  <i>ab + cd = ac</i> – 10<i>bd</i>.

Докажите, что среди них найдутся три числа, одно из которых равно сумме двух других.

В выпуклом четырёхугольнике <i>ABCD</i> диагонали перпендикулярны. На сторонах <i>AD</i> и <i>CD</i> отмечены соответственно точки <i>M</i> и <i>N</i> так, что углы <i>ABN</i> и <i>CBM</i> прямые. Докажите, что прямые <i>AC</i> и <i>MN</i> параллельны.

У Чебурашки есть набор из 36 камней массами 1 г, 2 г, ..., 36 г, а у Шапокляк есть суперклей, одной каплей которого можно склеить два камня в один (соответственно, можно склеить три камня двумя каплями и так далее). Шапокляк хочет склеить камни так, чтобы Чебурашка не смог из получившегося набора выбрать один или несколько камней общей массой 37 г. Какого наименьшего количества капель клея ей хватит, чтобы осуществить задуманное?

На переправу через пролив Босфор выстроилась очередь: первый Али-Баба, за ним 40 разбойников. Лодка одна, в ней могут плыть двое или трое (в одиночку плыть нельзя). Среди плывущих в лодке не должно быть людей, которые не дружат между собой. Смогут ли все они переправиться, если каждые двое рядом стоящих в очереди – друзья, а Али-Баба ещё дружит с разбойником, стоящим через одного от него?

На стороне <i>BC</i> треугольника <i>ABC</i> выбрана точка <i>L</i> так, что <i>AL</i> в два раза больше медианы <i>CM</i>. Оказалось, что угол <i>ALC</i> равен 45°.

Докажите, что <i>AL</i> и <i>CM</i> перпендикулярны.

Клетки таблицы 5×7 заполнены числами так, что в каждом прямоугольнике 2×3 (вертикальном или горизонтальном) сумма чисел равна нулю. Заплатив 100 рублей, можно выбрать любую клетку и узнать, какое число в ней записано. Какого наименьшего числа рублей хватит, чтобы наверняка определить сумму всех чисел таблицы?

Мама испекла одинаковые с виду пирожки: 7 с капустой, 7 с мясом и один с вишней, и выложила их по кругу на круглое блюдо именно в таком порядке. Потом поставила блюдо в микроволновку подогреть. Оля знает, как лежали пирожки, но не знает, как повернулось блюдо. Она хочет съесть пирожок с вишней, а остальные считает невкусными. Как Оле наверняка добиться этого, надкусив не больше трёх невкусных пирожков?

Даны 100 чисел. Когда каждое из них увеличили на 1, сумма их квадратов не изменилась. Каждое число ещё раз увеличили на 1.

Изменится ли сумма квадратов на этот раз, и если да, то на сколько?

В треугольнике <i>ABC</i> угол <i>C</i> прямой. На катете <i>CB</i> как на диаметре во внешнюю сторону построена полуокружность, точка <i>N</i> – середина этой полуокружности. Докажите, что прямая <i>AN</i> делит пополам биссектрису <i>CL</i>.

Учитель выбрал 10 подряд идущих натуральных чисел и сообщил их Пете и Васе. Каждый мальчик должен разбить эти 10 чисел на пары, подсчитать произведение чисел в каждой паре, а затем сложить полученные пять произведений. Докажите, что мальчики могут сделать это так, чтобы разбиения на пары у них не были одинаковыми, но итоговые суммы совпадали.

Есть 100 красных, 100 жёлтых и 100 зелёных палочек. Известно, что из любых трёх палочек трёх разных цветов можно составить треугольник.

Докажите, что найдётся такой цвет, что из любых трёх палочек этого цвета можно составить треугольник.

На сторонах треугольника <i>ABC</i> построены три подобных треугольника: <i>YBA</i> и <i>ZAC</i> – во внешнюю сторону, а <i>XBC</i> – внутрь (соответственные вершины перечисляются в одинаковом порядке). Докажите, что <i>AYXZ</i> – параллелограмм.

На боковых сторонах <i>AB</i> и <i>AC</i> равнобедренного треугольника <i>ABC</i> отметили соответственно точки <i>K</i> и <i>L</i> так, что  <i>AK = CL</i>  и  ∠<i>ALK</i> + ∠<i>LKB</i> = 60°.

Докажите, что  <i>KL = BC</i>.

Наибольший общий делитель натуральных чисел <i>a, b</i> будем обозначать  (<i>a, b</i>).  Пусть натуральное число <i>n</i> таково, что

(<i>n, n</i> + 1) < (<i>n, n</i> + 2) < ... < (<i>n, n</i> + 35).  Докажите, что  (<i>n, n</i> + 35) < (<i>n, n</i> + 36).

Найдётся ли такое десятизначное число, записанное десятью различными цифрами, что после вычеркивания из него любых шести цифр получится составное четырёхзначное число?

В турнире участвуют 100 борцов, все разной силы. Более сильный всегда побеждает более слабого. Борцы разбились на пары и провели поединки. Затем разбились на пары по-другому и снова провели поединки. Призы получили те, кто выиграл оба поединка. Каково наименьшее возможное количество призёров?

Найдите все <i>n</i>, при которых для любых двух многочленов <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) степени <i>n</i> найдутся такие одночлены <i>ax<sup>k</sup></i> и <i>bx<sup>l</sup></i>

(0 ≤ <i>k ≤ n</i>,  0 ≤ <i>l ≤ n</i>),  что графики многочленов  <i>P</i>(<i>x</i>) + <i>ax<sup>k</sup></i>  и  <i>Q</i>(<i>x</i>) + <i>bx<sup>l</sup></i>  не будут иметь общих точек.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка