Олимпиадные задачи из источника «Турнир городов» для 6-7 класса - сложность 1 с решениями
Турнир городов
Назад12 кандидатов в мэры рассказывали о себе. Через некоторое время один сказал: "До меня соврали один раз". Другой сказал: "А теперь – дважды". – "А теперь – трижды", – сказал третий, и так далее до 12-го, который сказал: "А теперь соврали 12 раз". Тут ведущий прервал дискуссию. Оказалось, что по крайней мере один кандидат правильно подсчитал, сколько раз соврали до него. Так сколько же раз всего соврали кандидаты?
Аня, Боря и Вася составляли слова из заданных букв. Все составили разное число слов: больше всех – Аня, меньше всех – Вася. Затем ребята просуммировали очки за свои слова. Если слово есть у двух игроков, за него даётся 1 очко, у одного игрока – 2 очка, слова, общие у всех трёх игроков, вычёркиваются. Могло ли так случиться, что больше всех очков набрал Вася, а меньше всех – Аня?
Первоначально на каждом поле доски 1×<i>n</i> стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за <i>n</i> – 1 ход можно собрать все шашки на одной клетке.
Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)
Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел?
Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них <i>a</i> человек считают, что будет лучше, <i>b</i> – что будет такой же, и <i>c</i> – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных: <i>m = a + <sup>b</sup></i>/<sub>2</sub> и <i>n = a – c</i>. Оказалось, что <i>m</i> = 40. Найдите <i>n</i>.
Есть три кучи камней. Разрешается к любой из них добавить столько камней, сколько есть в двух других кучах, или из любой кучи выбросить столько камней, сколько есть в двух других кучах. Например: (12, 3, 5) → (12, 20, 5) (или (4, 3, 5)). Можно ли, начав с куч 1993, 199 и 19, сделать одну из куч пустой?
На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?
Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.
10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.
Решить в натуральных числах уравнение: <img align="absmiddle" src="/storage/problem-media/98024/problem_98024_img_2.gif">
Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.
Докажите, что из любых семи натуральных чисел (не обязательно идущих подряд) можно выбрать три числа, сумма которых делится на 3.
Известно, что доля блондинов среди голубоглазых больше чем доля блондинов среди всех людей.
Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?
Автомат при опускании гривенника выбрасывает пять двушек, а при опускании двушки – пять гривенников.
Может ли Петя, подойдя к автомату с одной двушкой, получить после нескольких опусканий одинаковое количество двушек и гривенников?
Натуральное число <i>n</i> записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то <i>n</i> делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число <i>различных</i> цифр может содержать эта запись?
На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?