Олимпиадные задачи из источника «глава 5. Треугольники» - сложность 2-4 с решениями

Докажите, что отрезки, соединяющие вершины треугольника с точками касания противоположных сторон с соответствующими вневписанными окружностями, пересекаются в одной точке {(точка Нагеля))

Углы треугольника <i>ABC</i> удовлетворяют соотношению  sin²<i>A</i> + sin²<i>B</i> + sin²<i>C</i> = 1.

Докажите, что его описанная окружность и окружность девяти точек пересекаются под прямым углом.

В треугольнике <i>ABC</i> проведены высоты <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Докажите, что если  ∠<i>A</i> = 45°,  то <i>B</i><sub>1</sub><i>C</i><sub>1</sub> – диаметр окружности девяти точек треугольника <i>ABC</i>.

Через центр <i>O</i> правильного треугольника <i>ABC</i> проведена прямая, пересекающая прямые <i>BC, CA</i> и <i>AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>.

Докажите, что одно из чисел <sup>1</sup>/<sub><i>OA</i><sub>1</sub></sub>, <sup>1</sup>/<sub><i>OB</i><sub>1</sub></sub> и <sup>1</sup>/<sub><i>OC</i><sub>1</sub></sub> равно сумме двух других.

Треугольник, составленный:  а) из медиан;  б) из высот треугольника <i>ABC</i>, подобен треугольнику <i>ABC</i>.

Каким соотношением связаны длины сторон треугольника <i>ABC</i>?

В треугольнике <i>ABC</i> проведена биссектриса <i>AD</i>. Пусть <i>O, O</i><sub>1</sub> и <i>O</i><sub>2</sub> – центры описанных окружностей треугольников <i>ABC, ABD</i> и <i>ACD</i>.

Докажите, что <i>OO</i><sub>1</sub> = <i>OO</i><sub>2</sub>.

Вписанная окружность треугольника <i>ABC</i> касается сторон <i>CA</i> и <i>AB</i> в точках <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>, а вневписанная окружность касается продолжения этих сторон в точках <i>B</i><sub>2</sub> и <i>C</i><sub>2</sub>. Докажите, что середина стороны <i>BC</i> равноудалена от прямых <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>B</i><sub>2</sub><i>C</i><sub>2</sub>.

Вписанная окружность прямоугольного треугольника <i>ABC</i> касается гипотенузы <i>AB</i> в точке <i>P, CH</i> – высота треугольника <i>ABC</i>.

Докажите, что центр вписанной окружности треугольника <i>ACH</i> лежит на перпендикуляре, опущенном из точки <i>P</i> на <i>AC</i>.

Точки<i>A</i><sub>1</sub>и<i>A</i><sub>2</sub>,<i>B</i><sub>1</sub>и<i>B</i><sub>2</sub>,<i>C</i><sub>1</sub>и<i>C</i><sub>2</sub>лежат на сторонах<i>BC</i>,<i>CA</i>,<i>AB</i>треугольника<i>ABC</i>. а) Докажите, что если эти точки являются точками пересечения сторон треугольника<i>ABC</i>с продолжениями сторон треугольника<i>A'B'C'</i>, полученного из треугольника<i>ABC</i>при гомотетии с центром в точке Лемуана<i>K</i>, то точки<i>A</i><sub>1</sub>,<i>B</i><sub>2</sub>,<i>B</i>&...

Через точку <i>X</i>, лежащую внутри треугольника <i>ABC</i>, проведены три отрезка, антипараллельных его сторонам. Докажите, что эти отрезки равны тогда и только тогда, когда <i>X</i> — точка Лемуана.

Докажите, что точка Лемуана треугольника <i>ABC</i>с прямым углом <i>C</i>является серединой высоты <i>CH</i>.

Биссектрисы внешнего и внутреннего углов при вершине <i>A</i>треугольника <i>ABC</i>пересекают прямую <i>BC</i>в точках <i>D</i>и <i>E</i>. Окружность с диаметром <i>DE</i>пересекает описанную окружность треугольника <i>ABC</i>в точках <i>A</i>и <i>X</i>. Докажите, что <i>AX</i> — симедиана треугольника <i>ABC</i>.

Окружность <i>S</i><sub>1</sub>проходит через точки <i>A</i>и <i>B</i>и касается прямой <i>AC</i>, окружность <i>S</i><sub>2</sub>проходит через точки <i>A</i>и <i>C</i>и касается прямой <i>AB</i>. Докажите, что общая хорда этих окружностей является симедианой треугольника <i>ABC</i>.

Касательные к описанной окружности треугольника <i>ABC</i>в точках <i>B</i>и <i>C</i>пересекаются в точке <i>P</i>. Докажите, что прямая <i>AP</i>содержит симедиану <i>AS</i>.

Касательная в точке <i>B</i>к описанной окружности <i>S</i>треугольника <i>ABC</i>пересекает прямую <i>AC</i>в точке <i>K</i>. Из точки <i>K</i>проведена вторая касательная <i>KD</i>к окружности <i>S</i>. Докажите, что <i>BD</i> — симедиана треугольника <i>ABC</i>.

Докажите, что если отрезок<i>B</i><sub>1</sub><i>C</i><sub>1</sub>антипараллелен стороне<i>BC</i>, то<i>B</i><sub>1</sub><i>C</i><sub>1</sub>$\bot$<i>OA</i>, где<i>O</i>— центр описанной окружности.

Отрезок <i>B</i><sub>1</sub><i>C</i><sub>1</sub>, где точки <i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>лежат на лучах <i>AC</i>и <i>AB</i>, называют<i>антипараллельным</i>стороне <i>BC</i>, если $\angle$<i>AB</i><sub>1</sub><i>C</i><sub>1</sub>=$\angle$<i>ABC</i>и $\angle$<i>AC</i><sub>1</sub><i>B</i><sub>1</sub>=$\angle$<i>ACB</i>. Докажите, что симедиана <i>AS</i>делит пополам любой отрезок <i>B</i><sub>1</sub><i>C</i><sub>1</sub>, антипараллельный стороне <i>BC&lt...

Выразите длину симедианы <i>AS</i>через длины сторон треугольника <i>ABC</i>.

Прямые <i>AM</i>и <i>AN</i>симметричны относительно биссектрисы угла <i>A</i>треугольника <i>ABC</i>(точки <i>M</i>и <i>N</i>лежат на прямой <i>BC</i>). Докажите, что <i>BM</i><sup> . </sup><i>BN</i>/(<i>CM</i><sup> . </sup><i>CN</i>) =<i>c</i><sup>2</sup>/<i>b</i><sup>2</sup>. В частности, если <i>AS</i> — симедиана, то <i>BS</i>/<i>CS</i>=<i>c</i><sup>2</sup>/<i>b</i><sup>2</sup>.

а) Докажите, что угол Брокара любого треугольника не превосходит 30<sup><tt>o</tt></sup>. б) Внутри треугольника <i>ABC</i>взята точка <i>M</i>. Докажите, что один из углов <i>ABM</i>,<i>BCM</i>и <i>CAM</i>не превосходит 30<sup><tt>o</tt></sup>.

а) Пусть <i>P</i> — точка Брокара треугольника <i>ABC</i>. Угол $\varphi$=$\angle$<i>ABP</i>=$\angle$<i>BCP</i>=$\angle$<i>CAP</i>называется<i>углом Брокара</i>этого треугольника. Докажите, что <i>ctg</i>$\varphi$=<i>ctg</i>$\alpha$+<i>ctg</i>$\beta$+<i>ctg</i>$\gamma$. б) Докажите, что точки Брокара треугольника <i>ABC</i>изогонально сопряжены. в) Касательная к описанной окружности треугольника <i>ABC</i>в точке <i>C</i>и прямая, проходящая через точку <i>B</i>параллельно <i>AC</i>, пересекаются в точке <i>A</i><sub>1</sub>. Докажите, что угол Брокара треугольника <i>ABC</i>ра...

а) Через точку Брокара <i>P</i>треугольника <i>ABC</i>проведены прямые <i>AP</i>,<i>BP</i>и <i>CP</i>, пересекающие описанную окружность в точках <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>. Докажите, что $\triangle$<i>ABC</i>=$\triangle$<i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>A</i><sub>1</sub>. б) Треугольник <i>ABC</i>вписан в окружность <i>S</i>. Докажите, что треугольник, образованный точками пересечения прямых <i>PA</i>,<i>PB</i>и <i>PC</i>с окружностью <i>S</i>, может быть равен...

а) Докажите, что внутри треугольника <i>ABC</i>существует такая точка <i>P</i>, что $\angle$<i>ABP</i>=$\angle$<i>CAP</i>=$\angle$<i>BCP</i>. б) На сторонах треугольника <i>ABC</i>внешним образом построены подобные ему треугольники <i>CA</i><sub>1</sub><i>B</i>,<i>CAB</i><sub>1</sub>и <i>C</i><sub>1</sub><i>AB</i>(углы при первых вершинах всех четырех треугольников равны и т. д.). Докажите, что прямые <i>AA</i><sub>1</sub>,<i>BB</i><sub>1</sub>и <i>CC</i><sub>1</sub>пересекаются в одной точке, причем эта точка совпадает с точкой задачи а).

Докажите, что если прямая Эйлера проходит через центр вписанной окружности треугольника, то треугольник равнобедренный.

Докажите, что отрезок, высекаемый на стороне <i>AB</i>остроугольного треугольника <i>ABC</i>окружностью девяти точек, виден из ее центра под углом 2|$\angle$<i>A</i>-$\angle$<i>B</i>|.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка